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CHAPTER 1

INTRODUCTION

1.1. Motivation and General Background

The present thesis deals with certain topics in the area of Nash

and Leader-Follower dynamic games with state information available to the

* players. Our motivation for this study was the belief that game theory

* provides formalisms and results which are useful in describing,understanding

and manipulating successfully large scale and hierarchical engineering

systems. Hierarchical and large scale systems have received considerable

attention during the last few years; firstly because of their importance

in engineering, economics and other areas, and secondly because of the

increased capability of computer facilities [37], [383. An important

characteristic of many large scale systems is the presence of many decision

makers with different and usually conflicting goals. The existence of many

decision makers who interact through the system and have different goals may

be an inherent property of the system under consideration (e.g., a market

situation), or may be simply the result of modeling the system as such (e.x.,

a large system decomposed to subsystems for calculation purposes). Differential

j games are useful in modeling and studying dynamic systems where more than

one decision maker is involved. Most of the questions posed in the area of

the classical control problem may be considered in a game situation, but

j their resolution is generally more difficult. In addition, many questions

can be posed in a game framework, which are meaningless or trivial in a

classical control problem framework. The superior conceptual wealth of game

over control problems, which makes them potentially much more applicable,
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counterbalances the additional difficulties encountered in their solution.

The theory of games achieved its maturity as a field of active

research basically due to John von Neumann. The publication of the book

"Theory of Games and Economic Behavior" by J. V. Neumann and 0. Morgenstern

[66], gave the impetus for research in Game Theory. Although the theory of

games was initially appealing almost exclusively to some Economists, it's

usefulness in applications and challenge as an area of research is today

recognized by many Engineers, Mathematicians, Economists, Sociologists,

Psychologists and Political Scientists. The attention of the researchers

was initially almost exclusively focused on static two-player, zero-sum games.

Rufus Isaacs by imposing a certain type of structure to the sets and the

functions describing a two-player, zero-sum game in it's abstract general

form established the area of two-player, zero-sum differential games, [673.

In the literature, the characterization "static" is usually attributed to games

V which are presented so as to have suppressed in the final formalism any

explicit dependence on tlhe evolution of time. The characterization "dynamic"

is attributed to games where evolution of time is not suppressed in the final

formalism with which the game is presented. The difference between static

and dynamic games lies mostly in the way that we choose to state the game,

since every dynamic game can be stated equivalently as a static one. (The

discussion on normal and extensive form of a game, see [66], is pertinent

here). Nonetheless by adopting a static game theoritic description of a

certain problem, in which problem the evolution of time is present, we hide

a lot of the underlying concepts which are related to the evolution of time

and might be useful in posing and studying questions about the game as well
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as in interpreting several theoretical results. Dynamic games are usually

described by differential of difference equations (deterministic or stochastic)

Iand the term differential games is usually reserved for the former description.
The present thesis deals with dynamic games with more emphasis on the differen-

tial ones.

jThe two particular types of games which are of interest here are

the so called Nash differential games and Leader-Eollower (LF) differential

Igames, see [i] and [33] respectively. The geKneral definitions of Nash and

LF games are as follows. Let U, V be two sets and Jl' J2 two functions

I
J. UxV -R, i=l1,2.(1)

J1' J2 are referred to as the cpsts and U, V as the strategy spaces ofI
players I and 2 respectively.

Definition of a Nash Equilibrium: A pair (u*, v*)EUxV is called a Nash

equilibrium pair if (u*,v*) satisfies

Jl(u*,v*) £ Jl(u,v*), YuEU

(1.2)

SJ2 (u*,v*) :S J2 (u*,v), VvEV.

5 To define an LF equilibrium pair we need first to define a mapping T.

Consider the set valued mapping T

T: U-V, uTu C V (1.3)t
defined by

I Tu =Lvjv=arg inf[J 2 (u,v); vEV]J. (1.4)

!
1
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Clearly Tu if the inf is not achieved. We also consider the minimization

problem

inf Jl (u,v)

(1.5)

subject to: uEU, vETu,

where we use the usual convention Jl(u,v)=+- if vETu=p.

Definition of an LF equilibrium: A pair (u*,v*) EUXV is called a Stackel-

berg equilibrium pair if (u*,v*) solves (i). (In LF games it is standard

to say that a leader chooses u EU and has cost J and a follower chooses

vEV and has cost J2).

If we are interested in a Nash equilibrium we say that we have a Nash game

and if we are interested in an LF equilibrium we say that we have an LF

game. Notice that we do not ask that Jl+J2=0, i.e. we are dealing with

nonzero-sum games.

Nash games provide a formalism for describing situations of conflict

where player 1 chooses uEU, player 2 chooses vEV, player 1 is interested

in minimizing his cost J1, player 2 is interested ft minimizing his cost J2

and the two players do not trust each other and do not cooperate. Nonetheless,

each one assumes for the other that he will act in a rational way and try to

satisfy (1.2). LF games provide a formalism for describing the following

situation. The follower tries to minimize his cost J2 for a given choice of

u E U by the leader. The leader whose interest is to minimize Jl' knowing

the follower's rationaland having the privilege to choose his strategy first,

wishes to announce a u*eU, such that together with the follower's reactionv* to

u*, will result to the minimum possible J1 , Notice that in LF games the
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leader chooses and declares his u first ie. there is a hierarchy in the

decision making in contrast with Nash games where the players choose and

declare their choices simultaneously. Notice also that in a Nash game both

j players must know U,V,J1 ,J2 while in an LF game the leader must know U,V,JI,

J2 and the follower must know u*,V and J2'

j Nash games were first introduced and studied in a static framework

0 by J. Nash [68]. The dynamic version of Nash games was first introduced and

studied by Starr and Ho [1]. LF games was first introduced by von Stackel-

berg [26], who studied a simple static game in a -inite dimensional framework.

The dynamic version of LF games was first introjuced and studied by Chen and

Cruz and Simaan and Cruz, [27-29]. The introduction of Nash and LF dynamic

games was motivated significantly by R. Isaacs work [671 on two-person, zero-
sum dynamic games.

In order to describe Nash and LF two-player differential games we

consider the state equation

k(t) =f(x(t),u(t),-(t),t), x(t o  =[ 0o '[t f ]  (1.6)

and the cost functionals

tf

Ji(uv) = gL(x(tf)) + ILi (x(t),U(t),_v(t),t)dt, i=1,2, (1.7)
l i Jiuv gi x~f) + o

where x(t)ERn, u(t)6R , v(W)ER and f, Li, g, are functions with appropriate

domains,and ranges in R n , R , R respectively and satisfy certain continuity

and differentiability assumptions. Also uEU, vEV where U and V are defined

below and U(t), v(t) are the values of u and v respectively, at time t. At

each instant of time t player 1 has a certain information about the previous

values of the trajectory and the previous values of his opponent's control
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values, i.e. about xt and vt, More precisely, at time t, player 1 knows

II(xt,Vt,t) see (1.9). Before player 1 chooses his u, he only knows the

function Il Similarly player 2 knows a function 12 which means that at time

t we will know I2 (xt,utt), At the beginning of the game the players choose

functions u and v and substitute u(I1(xtv tt)), V(12 (xtt,t)), in the

place of u(t), v t) in the state equation and the cost functionals. The

differential equation

ct) = f(x(t), u(I1 (xtvt,t),v(I2 (xt,utt),t)

x(t) , tC [Totf] (1.8)

is solved where

xt  {x(T)t 0T t}

ut °{ ( xTI 91.) T l t} (1.9)

vt ={v(I2(xu ,T ),T)jt 0< T < t}

and the u,v are fixed. Assuming that the solution of (.1.8) exists and is

unique, call it x(t;u,v) we can calculate the values of the cost functionals

which will depend on u and v. The functions IlI29 their images and the

possible continuity differentiabily and image assumptions on u and v deter-

mine U and V. For example, if Ii(c,8,y) = (f(to),y), i=1,2, ie. both

players have no information except knowledge of the current instant of time t

and x we can consider U, V to be sets of piecewise continuous function of

time which depend also on x . This case is called open-loop. Another example

is to choose 1l, 12 such that the players know at each instant of time t,

the triple {x ,X(t),t}. Notice that in general, II and 12 have function spaces

0A
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J as domains and images, For the set up of this paragraph the definitions of

Nash and LF games are those given before.

In the case where (1.6) is substituted by a stochastic differential

j equation and expectation is taken of the cost functionals (1,7), we say that

we have a stochastic differential game. Also, we can substitute (1.6) by a

j difference (stochastic or not) equation, and consider summations (with

expectation in front), in place of the integral cost functionals (1.7).

We can pose several questions about the differential game described

above. For example, for given 1lVI2V we can study existence and uniqueness

of solutions and necessary and sufficient conditions for a pair (u*,v*) to

be an equilibrium (Nash or LF) pair. We can also investigate the dependence

of an equilibrium pair and of the resulting costs on 11and 1 2' These and

many other questions which have been posed elsewhere are difficult to study.

The case where I.(L~y Wt 0n),Y), i=1,2 is easier and there are several

results about it. In the present thesis we will try to answer questions on

Iexistence, uniqueness and characterization by necessary and sufficient condi-

tions for cases where 11.12 are such that provide information about the

current and the previous values of the state to the players.

1.2, Outline of the Thesis

In the rest of the introduction we give a general outline of the

results of the present work and relate them to already existing ones.

In Chapter 2 we deal with Nash two-player differential games,

where (1.6) is linear in x, u, v and the costs (1.7) are quadratic, i.e.

with linear quadratic Nash games,except in the Section 2.4 where nonlinear
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f and glg 2 L1,L 2 are also considered. The information available to each

player at time t is x(t) and t and we call this case closed loop, The Nash

solution for linear quadratic games has been studied in several papers, see

[1-10]. Despite the many results available in this area, those concerning

existence and uniqueness of optimal strategies are far from being satisfac-

tory. This holds true especially if the strategies take into account infor-

mation about the present and past values of the state of the system. En

this context F61, [171, [18] can be pointed out. En these papers, the non-

uniqueness of the Nash equilibrium strategies was demonstrated when the

current state x(t) and the initial state x 0are available to at least one of

the players. It was also shown that in the case of discrete-time linear

quadratic games, under invertibility conditions of cer~tain matrices,

if noise is introduced to the state equation, then the Nash equilibrium

strategies linear in the current state x~t) (assuming they exist) are the

unique solution without restricting a priori the admissible strategies to be :
linear in the current state. The closed loop Nash strategies are not neces-

sarily linear [6], and even if restriction to linear strategies is made, still

little is known concerning their existence, properties, interpretation in

terms of solutions to the coupled Riccati equations, and the stability

of the closed loop system. For the linear quadratic game over a finite

period of time [0,T], there are certain existence results for closed loop

Nash strategies, assuming that T is sufficiently small and/or that the strate-

gies lie in compact subsets of the admissible strategy spaces [31, [71, [8].

In [2], [5] the boundedness of the solutions of certain Riccati type differ-

ential equations is assumed in order to guarantee the existence of Nash

strategies. Finally, [151 deals with the static N-person Nash game, under
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I compactness and convexity assumptions for the strategy spaces and concavity

assumptions for the criteria, Chapter 2 contains three sections, In Sec-

tion 2.2 we deal with existence of Nash equilibria which are linear in x(t),

the time interval is [0,co) and all the matrices involved in the description

of the state equation and cost functionals are constant. For this case there

j was no existence result available known to us. Although our results do not

solve the problem completely they are applicable to a subclass of problems.

* I They are stated in terms of conditions on the norms of the matrices involved

* I and they do not depend on controllability or observability assumptions. They

can be viewed as conditions for solution of certain coupled algebraic Riccati

* type matrix equations. Wie derive our basic existence result by using Brouwer's~

, Fixed Point Theorem in a way wjhich disengages our result from a local character

that a straightforward application of Brouwer's Theorem would impose. The

generalization of our results to the N-player case is obvious. It should be

pointed out that for many of the conditions presented no assumptions of con-

I trollability, observability or semidefiniteness are made, Therefore we

actually single out a region of parameter space (A,B.,Q.,R..j) where in the

I' existence of solutions does not depend on controllability and observability.

This region is necessarily contained in the region where A is asymptotically

stable, or is the neighborhood of a parameter point for which a solution of

an auxiliary control problem exists. Outside this region the existence of

solutions will depend in general on controllability and observability proper-

S ties, but presently conditions under which existence can be guaranteed are

not known. Finally as a byproduct of the use of Brouwer's Theorem we in-

terpret some existing results about the algebraic Riccati equation of the

control problem in a new way, see Remark iii in 2.1.3. In Section 2.2 we
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consider a Linear Quadratic Nash Game over a finite period of time [0,T].

The matrices involved are piecewise continuous functions of time, The

existence of linear closed loop Nash strategies depends on the existence of

continuous solutions to an associated system of two coupled Riccati differen-

tial equations over [0,T], Sufficient conditions for existence are

derived by using a simple result from the theory of differential

inequalities, The conditions are given in terms of upper bounds on the

length of the time interval of interest and do not depend on controllability

or observability assumptions. The positive (semi-) definiteness assumptions

on QI. Rij are not used in proving the existence of solutions.

Although the conditions give only a partial answer to the question

of existence of solutions, they can nonetheless provide a positive answer

for a certain class of problems. The extension of the present results to the

N-players case is straightforward,

In Section 2.3 we consider the case where f,L1 ,L2,g1 ,g2 are

analytic functions, the time interval is finite and fixed and tha players have

closed loop information. It is shown that if the strategy spaces are re-

stricted to analytic functions of the state and time then the Nash equilibrium

pair is unique - if it exists, In particular, for a linear quadratic game,

where the matrices involved are analytic functions of time, it is shown that

if the coupled Riccati differential equations have a solution, then the Nash

equilibrium strategies which are affine functions of the state constitute the

unique analytic solution pair. Although the result of this section is proven

under the strong analyticity assumptions, it provides at least a partial



J answer to the question of uniqueness for a certain class of problem. It pro-

vides also an additional characterization of Nash equilibrium strategies

I which are affine functions of the state in the context of linear quadratic

jgames with analytic matrices, since it shows that these strategies constitute
the solution over strategy spaces much larger than those which are apriori

j restricted to be affine in the state strategies. The introduction of analyti-

city assumptions removes the nonuniqueness of the Nash solution for determinis-

tic differential games, which is analogous to the removal of nonuniqueness of

Nash solutions by introduction of noise 117], [18]. The extension of these

results to the N-player case is straightforward.

In Chapter 3 we study LF differential games where the leader knows

at each instant of time t, the values x and x(t) of the state and of course0

t. In the area of LF games, the type of strategy spaces U and V which were

considered and treated successfully in the previous literature where the spaces

of piecewise continuous functions of time, In this case, the problem of

deriving necessary conditions for the Stackelberg differential game with fixed

time interval and initial condition x, falls within the area of classical

control. Thus variational techniques can be used in a straightforward manner.

1The case where the strategy spaces are spaces of functions whose values at

instant t depend on the current state x(t) and time t, i.e., u(t) = ut =

u(x(t),t), v(t) = vIt - v(x(t),t), was not treated. This case results in a

au
nonstardard control problem because F- appears in the follower's necessary

conditions. Since the follower's necessary conditions are seen as state
au

differential equations by the leader, the presence of Lx in them makes the

leader face a nonstandard control problem. In this Chapter, the nonstandard
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control problem arising from the consideration of the above strategy spaces

is embedded into a more general class of nonstandard control problems. The

characteristics of this general class of problems are the following:

i
(i) each of the components u , of the control m-vector u, depends on the

current time t and on a given function of the current state and time, i.e.

u = ui(hl(x(t),t); (ii) the state equation and the cost functional de-

pend on the first order partial derivative of u with respect to the state

x. The vector valued functions hi may represent outputs or measurements

available to the i-th "subcontroller," in a decentralized control setting.

The only restriction to be imposed on hi is to be twice continuously

differentiable with respect to x. This allows for a quite large class of

h is which can model output feedback or open loop control laws. It can also

model mixed cases of open loop and output feedback control laws where during

only certain intervals of time an output is available. The appearance of

the partial derivative of u with respect to x prohibits the restriction of

the admissible controls to those which are functions of time only. Two

different approaches for deriving necessary conditions for the nonstandard

control problem are presented. The first uses variational techniques, while

the second reduces the nonclassical problem to a classical one. The

nonexistence of a control law u*(x(t),t) which u* solves the problem for

every x is shown. The nonuniqueness of the solution of this problem is also

considered and explained, The results obtained for this nonstandard control

problem are used to study an LF differential game where the players have

current state information (xox(t),t)). Necessary conditions that the opti-

mal strategies must satisfy are derived. The inapplicability of dynamic
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programming to LF dynamic games is explained and discussed. The singular

character of the leader's problem is proven and the nonuniqueness of his

strategies is proven and characterized. In particular, it is shown that

commitment of the leader to an affine in the current state, time varying

strategy does not induce any change to the optimal costs and trajectory.

The Linear Quadratic LF game is also worked out as a specific application.

We will now outline certain generalizations of the results of this Chapter.

We consider, first, the discrete time versions. Consider the dynamic system

Xk+l - f(xk,u (h (xk,k),k),...,u (h (xk,k),k),

u 1(h .... ,k),k)

x0 given, k = 0,...,N-1

and the cost

N-1
J(u) = g(xN) + VZoL(xkul(hl(xk,k),k),...,um(hm(xk,k),k),

1 1
u (h (xk,k)k),...,um(hm(xkk),k).

The proof of the corresponding Theorem 3,2.1 is straightforward, An immediate

consequence is that the restriction

i ii i
u (h (Xk,k),k) = Akh (xk,k) + Bk, i1,.,,m 1

i i
where AB k are matrices, does not induce any loss of generality as far as

the optimal cost and trajectory are concerned. Proposition 3.2.1

carries over, too. A discrete time version of the LF game of 3-1 can be

defined (see [33]), and analyzed as in 3-3. Several information patterns can

I
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be exploited by employing different hils (see [33]). The restriction of the

leader to affine strategies can also be imposed in the discrete case. The

case where higher order partial derivatives of u w~r. to x appear can be

treated, and all the analysis carries over. This case is of interest in

hierarchical systems since it arises, for example, in an N-level LF game where

the players use control values dependent on the current state and time.

Finally, an N-level LF game where on each i-level (i=l,,..,N)) n. followers

operate (Ui,...,Ui), play Nash (or Pareto) among them, and ul

i i 
i n

u. (h. (x,t),t) j=l,.,.,ni, i=l,...,N, with given h. and fixed xo , to , tf can

be easily treated by using the analysis for the nonstandard control problem

supplied in 3-2.

In Chapter 4, we consider a continuous time two player deterministic

differential game with a linear state equation and two quadratic cost functionals.

We consider the case where the players have at each instant of time recall of

previous values of the trajectory, i.e. they have memory. What they remember

about the previous values of the trajectory, is allowed to change with the

elapse of lime. It is a known fact that in LF and Nash differential games,the re-

suiting trajectory and strategy values vary with the admissible strategy spaces.

Most of the results available until now deal with cases where the current state

or the initial state of both of them are the only available information to the

players. A more general situation is to assume that at each instant of time,

each player knows something about the previous values of the state of the

system and about the previous values of his and the other player's decisions.

The first attempt to derive necessary conditions for zero sum games where the

strategies depend at each instant of time t on the part of the state trajectory
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between t-r and t, where r>O, appears to be in [40], In 1411, [42] the zero-

sum case is considered where one player has a time lag information on the

value of the state. In [421 a Hamilton-Jacobi theory is developed for such

games. In Chapter 3 the LF differential game was solved when the leader's

information at time t is xlt), xCO), and t. It was shown there, that the

leader can in general restrict himself in strategies affine in x(t) and that use of

nonlinear strategies in x(t) will not improve his cost. The argument of

Chapter 3 can in principle be extended to the case where the leader's infor-

mation at time t is {x(O), t < e < t} and one can show that the leader0

does not in general deteriorate his cost if he uses strategies affine in

{x(e), to < 9 < t}. Therefore one is motivated to restrict apriori the
t

strategy of the leader to be of the form Id sn(t,s)]x(s) + b(t), in which
t 5

case n and b are what the leader will actually choose. For given n and b

the follower solves his problem. Necessary and sufficient conditions for the

follower's control problem can be found in [451 and [46] (Theorem 5.2) respectively.

On the other hand, the leader's problem is quite difficult since his unknowns

are n and b. It was also shown in Chapter 3 that the principle of optimality

holds in LF games if and only if the leader's problem can be treated as a

team problem for both leader and follower. (This does not necessarily mean

JI=J2 ) . These remarks motivate us to study LF games where the solutions are

linear in {x(6), t 4 9 Y t} and constitute a team solution for the leader's

problem. In our model a wide range of delayed information structures is

included, from perfect recall of the previous trajectory to recall of only one

previous value of the trajectory. Cases where information about the past
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strategy values is available to the players are also considered. We consider

strategies affine in the available information and represent them by using

Lebesgue-Stieltjes integrals, Both Nash and LF equilibrium concepts are

considered and sufficient conditions are developed for a particular but

quite interesting class of problems. Particular emphasis is placed on the

LF case. The problem that we deal with differs from those considered by

Halanay in f40] and by Ciletti in [41], [42]. Halanay considers the zero

sum case only and he allows the strategy values at time t to depend on the

part of the trajectory between t-T and t, where T>O is fixed. Ciletti

considers also the zero sum case and allows dependence of the strategy

values at time t only on x(t-a) and the strategy values between t-o and t,

where a>O is fixed. Existence and uniqueness conditions related to the

sufficiency conditions proved in this Chapter are not as yet known. Our

results generalize trivially to the N player case for a Nash game and to

the one leader-N followers case for an LF game. Although for the time being

our results are not accompanied by computationally efficient procedures,

they are of importance sirce they provide valid characterizations.

The last Chapter 5 deals with Nash games in the presence of

stochastic disturbances. It is known that the study of stochastic games is

usually more difficult than the study of deterministic ones and consequently

very few interesting and general results are known. The aim of this chapter

is to solve some special classes of Nash games and to point out several difficulties

which make the explicit solution of such games very difficult. It is

shown that in linear quadratic Nash gamesdecoupling of the information

of each player from the influence of thecontrolof the other is not always

sufficient to establish existence and uniqueness of solutions affine in the
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information. Conditions where this decoupling property sufficies to achive

that are exhibited for both static and dynamic problems. It is also show

that decoupling of the information of each player fwm the control of the

other and decoupling the cost functional of the one player only from the control

of the other is very close to being sufficient for existence and uniqueness of affine

in the information solutions. Conditions where this is the case are exhibited.

We start in Section 5.2 by considering a static stochastic Nash game, where

each player has a quadratic cost and his information is a linear function of

a Gaussian random variable. Certain known results are considered first and

some new ones are provided concerning the existence and uniqueness of the

solution. In 5.3 we study solutions of the game of 5.2 which are affine in the

information and provide a method for finding them. In 5.4 we generalize some

of the results of the previous sections to the case where each player's control

vector is subdivided to smaller control vectors each one of which has to use

different information. The information available to the subvector of each

control vector is nested. In 5.5 we consider a discrete time stochastic Nash

game with linear stochastic state equation and quadratic costs where the

players have noise corrupted state measurements. Special cases of this game

were solved in [17] and [63]. The case where both players have perfect state

measurements, was studied in [17] and it was shown that if the noise in the

state equation is nondegenerate, then the game admits a unique solution affine

in the information, under invertibility conditions for certain matrices. It

was also shown in [17] that if the noise in the state equation is degenerate,

then the game will have in general an infinite number of nonlinear solutions.

The case where at each stage k the players share their previous state

I
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measurements and their information differ only in the k-th

state measurement was studied in [63] where it was shown that the

game will admit a unique solution affine in the information, under

invertibility conditions for certain matrices. In the more general case

where the assumptions of [17], 163] concerning the information of the players

do not hold,the solutions of the game becomes extremely difficult. In Section

5.5 we single out some new classes of problems which can be relatively easily

solved by using the results of the previous Sections. In the last section

We translate some of the results of Section 5.5 to a continuous time

stochastic Nash game with a linear stochastic state equation and quadratic

costs where the players noise corrupted state measurements. Examples

demonstrating certain properties of the solutions are considered in most

Sections.

Finally we have a Conclusions Chapter 6 where we outline directions

for future research and seven Appendices.

1.3. Notation and Abbreviations

Rn
Rn: n-dimensional real Euclidean space with the Euclidean metric

R[ U or l I: denotes the Euclidean norm for vectors and the sup norm for matrices

': denotes transposition for vectors and matrices.

For a function f: Rn - Rm we say that f E Ck if f has continuous

mixed partial derivatives of order k. For f: Rn - R, Vf is considered as

n m
nxl column vector and f denotes the Hessian of f. For f: R - R , Vf isxx

nkrn. n k
considered as nxm matrix (Jacobian). For f: R XRkR where xER , yER

we denote by f or f or V f the Jacobian matrix of the partial

ax X X

derivatives of f with respect to x and is considered as nxm matrix.
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f C([t0,tf],Rn) = C: The Banach spaces of continuous function : [t0,t f]

Y0: [t0 ,tfJ Rn, with norm

KPII-suptIY(t)I; t E[t0 ,tfI

where I denotes the usual Euclidean distance in

njR.
L([t,tf1,Rn) =Ll,n The Banach space of Lebesgue integrable functions

l~f l~ntf

Y: [t0, tf -Rn with norm lp11j = jC(t) Idt.
t to

L,([t O tf],Rn) =L n :  The Banach space of Lebesgue measurable functions

which are almost everywhere bounded, with norm

11,P1 =ess suptic(t) i,tE(t0 ,tf]j.

NBV([to,tf],Rn) =NBV: The Banach space of normalized functions of bounded

variation, i.e.: continuous from the right on (t,tf),

zero at tf, and 11Y11 =Var(Y) for YENBV.

A norm in one of these spaces is denoted sometimes by i.i Ll' NBv

B denotes the conjugate space of a Banach space B. If x EB and xEB, we

write <X ,x>x (x).

w.r. to: with respect to

w.l.o.g.: without loss of generality

n.b.d.: neighborhood.

Additional notation is introduced when needed.

i . -;- - _ .. - .. . .. . ...--. ..
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CHAPTER 2

CLOSED LOOP NASH STRATEGIES

2.1. Introduction

The present Chapter deals with closed loop Nash solutions to continous

time differential games and is divided into three parts, 2.2, 2.3, and 2.4.

In 2.2 and 2.3 we are concerned with existence of solutions to linear quadratic

Nash differential games and in 2.4 with uniqueness of analytic solutions to Nash

differential games with analytic data.

In 2.2 we consider the linear quadratic, time invariant case over

an infinite horizon. The structure of 2.2 is the following. In 2.2.1 we

describe the system and formulate the problem which is the existence of

linear closed loop Nash solutions which result in a stable system. The ques-

tions posed are pursued in 2.2.2 and 2.2.3. The existence of such solutions

depends on the existence of solutions to a system of two coupled algebraic

Riccati equations which result in a stable closed loop system. Conditions

for the existence of such solutions are derived via Brouwer's Fixed Point

Theorem. The conditions derived in 2.2.2 state that linear closed loop Nash

strategies exist if the open loop matrix A has a sufficient degree of stability

which is determined in terms of the norms of the weighting matrices. 2.2.3

contains some extensions of the conditions derived in 2.2.2 which do not

require stability of the open loop matrix.

In 2.3 we consider the linear quadratic finite time (tE[0,T]) case.

The matrices involved are piecewise continuous functions of time. The struc-

ture of 2.3 is the following. In 2.3.1 we describe the system and pose the

problem which is the existence of linear closed loop Nash solutions. The
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f existence of such solutions depends on the existence of solutions to an

associated system of two coupled Riccati differential equations over [0,T].

J In 2.3.2 sufficient conditions for existence are derived by using a simple

result from the theory of differential inequalities.

In 2.4 we consider a Nash differential game where the functions f,

Ligi, involved in the description of the problem are analytic functions of

their arguments and seek Nash solutions which are also analytic functions of

their arguments. This problem is studied in 2.4.1. In 2.4.2 we apply the

results of 2.4.1 to a linear quadratic, finite time, Nash game where the

matrices involved are analytic functions of time.

Four Appendices to this Chapter are given at the end of the Thesis.

2.2. Infinite Horizon: Existence of Closed Loop Nash Strategies and

Solutions to Coupled Algebraic Riccati Equations

2.2.1. Problem Statement

Consider the dynamic system described by

x = Ax + BU + B2u2, x(O) xo, t" [0,+-) (2.1)

and two functionals

JI(Ulu 2) = Y (x'Qlx+ uiR 11U+ u, 12u2)dt
0

(2.2)

J2 (ulu 2 ) = f (x'Q 2x+u 2 2 u2+ulR2 lUl)dt2 2 0 2 R2u+ 2lu
0

m I

n m1 m2
where x, uI, u2 are functions of time taking values in Rn, R , R respec-

t ive ly an . A, B1, B, %= Q'., R. R'., R.. > 0, i,j = 1,2 are real constant

2 ij j ii

matrices of appropriate dimensions.

* *
The problem is to find Ul, u2 as linear functions of x, i.e.,
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u. -Lix, with L. real constant matrix, such that J i(Ulu 2) is finite (see

Appendix B), i 1,2 and

J (U'U2 Jl(UllU2)  for every u1 = -Llx

(2.3)

J 2 1 (Ul'U2 2 (uUl2
)  for every u2 = -L2x.

The conditions (2.3) are the Nash equilibrium conditions. It is known (see

[i], that a necessary condition for the existence of such controls ul, u2,

is that there exist constant real symmetric matrices K1, K2 satisfying

-i ,-i , -1
0= KA+ A'K + Q,- KB1' - KBR 2B K - KB R B' K,I 1 Q- K1 B1R1 B1 K1  K1 B2 R22 2K2 2 2 222 1

-1 -1 BK+ K2 B2 R2 2 R 1 2 R2 2 B2K2
2 K 2 22RB 2 K2K +(2.4)

0 =  K2A + AK + - K2 B2  2B 2 K2 - K2 B R111 1 KBIRIIB2

-i - 2 ,
+ K1 B1 RllR2 1 Rll B1K

1 1 11 2 1 1*

It can be proved that if such K.'s exist and the closed loop matrix• 3.

-1 , -1i

A - BIR 1 1BIK I - B2"22B2K2  (2.5)

has Re%(A) < 0, i.e., A is asymptotically stable (A.S.), and

Q. + K'B R 'R. .R.IB"K. k 0, i # j, i,j = 1,2 (2.6)
3 . J i j j1 J J.l

2
For (2.6) to hold it suffices for example: Oj - 0, Rij ' 0.
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Jthen the strategies
u. = -Lx -R. .BK.x, i = 1,2 (2.7)

satisfy (2.3) and Jl, J2 are finite. (In relation to this see Proposition 1

in[4 . The proof of this Proposition in [41 does not hold under the

assumptions stated there, see Appendix A).

I In the next section we will deal with the solution of (2.4) and try

to find conditions under which solutions exist and yield A A.S.

2.2.2. Conditions for Existence of Solutions

We start by introducing the following notation

= K1  0i A 0 0 0 I
K F, Q= ,

0 K 0 A0 2 0

1 =BRIBI, S2 2222
= -i -I ,= -I -I ,(2.8)

S= BRSo Sol B1RIPR2 1RJiB(2

S 0 $ S o 0
1 o0

0 S *0 S2 o2.

where I denotes the n X n unit matrix. Using this notation, (2.4) assumes the

~form

0 - R(K) _ F'K + KF + Q - KSK - KJSKJ - JKSJK + JKJS JKJ. (2.9)
0

Consider the space X of 2nx 2n real symmetric constant matrices

of the form
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M 0

0 N

where M and N are nx n. X is a linear subspace of the space of 2nx 2n real

matrices. All norms of the matrices to be considered here are the sup norms

(I1AII = supiIAxI:!ixI= 1l), and the norms of the vectors are the square root-

Euclidean norms. It is easy to see that for YE X, IJYI = max (jlMj,'JNjj). We

denote by I0 the 2n x2n unit matrix and for R 2 0 we set BR =  YE X:IIY R},

i.e., BR is the compact ball of radius R centered at the zero element of X.

We define the function from X into X by

(K) = R(K) + K. (2.10)

Clearly if KE X then (K)E X, and is continuous. The following lemma is

proved by using .Brouwer's fixed point theorem (see [131p. 161).

Lemma 2.1. If for some R>O

(31SlI + IS 1l)R 2 + ( lo+2F! - l)R + 0 (2.11)

holds then there exists KE X, with SIKI R which satisfies R(K) = 0.

Proof. For X a fixed real number we have

(K) = K(F+ XI) + (F'+ (l-%)I)K + Q - KSK - KJSKJ - JKSJK + JKJSoJKJ

from which for KEBRusing the obvious fact: jJ I = 1, we get

!J (K)jj S R(JlXI +Fll+l(l-x)I +Fjl) + 1101 + R 2(31S tS+ ! s o 11) .

Since I+ S I +(1-%)1 + F1, with equality for X we setii

-!, (best X). The result now follows by direct application of Brouwer's

theorem.

J.
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Let us introduce the transformation

K aK (2.12)

where a#0 is a constant and KE X. Substituting K = oK in (2.9) we obtain

(K A - 2 2-
0 (K) = R(1K) = R (K) (F)'K+ K(oeF) + Q -K(a S)K - KJ(aC S)KJ

J( 2 S)j+ JJ( 2S (2.13)

Applying Lemma 2 .1to (K) = R (K) + K, we obtain that if for some R Z 0 it

holds

(31ISIJ+ ISo )a2R 2 + (III+ 20eAl - 1)R + 111j 0 0, (2.14)

then there exists KEX, lIK1 5 R which satisfies R (7) = 0. But then K = cK

satisfies RM(K) = Ra(K) = 0 and 1KII 5; laiR. We thus have proved

Lemma 2.2. If for some a #0, R_>0, (2.14) holds, then there exists KEX,

jlKjI r leiR which satisfies R(K) = 0.

The scaling introduced in (2.12) helps to improve (2.11) and get

(2.14), because in proving Lemma 2.2 we applied Lemma 2.1 to a whole class of

e s which are nonlinear (quadratic in K) and asked that at least one of them

have a fixed point via Brouwer's theorem. As it turned -it i 'ne of them,
say 0. has a fixed point then all of them have (since R (S) = (aS) = (,-S))

say

although (2.14) may not hold for a.

Set

a 311a1l + ':.s i

b I1+ 2a
(2.15)

q

e AOa. -,/72I
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Then, (2.14) assumes the form

a2 R + (b-l)R + q - 0 (2.16)

If a = 0 then BI = 0 and B2 = 0, and the game is meaningless as such. There-

fore assume a 0. Inequality (2.14) is satisfied for some R 2 0 if and only

if

(i) I > b + 21aIe

or

(ii) q = J and I < b.

In case (ii) R = 0 is the only solution to (2.16) and thus Lemma 2.2 guarantees

only the solution K, = 0, K2 
= 0. Consequently we will concentrate on

case (i), i.e., when

I : 1II+2oeI + 21Yee. (2.17)

If (2.17) holds then (2.16) is satisfied for all R: RI 1 R R2 where

-- Ub-2-4a2e 2 Z 0. (2.18)
RI,2 2a2 a

In this case Lemma 2.2 guarantees the existence of solutions KI , K2 with

11KI!I, I!K211 ! JaIR. We have

Theorem 2.1. Let a>O. If for some a#0, (2.17) is satisfied, then for

every R: RI: R R2 where RI, R2 are as in (2.18), there exist KK 2 satisfy-

ing (2.4) such that

Ki I IR  " I = M. (2.19)

Proof. The proof has already be- given except for the right hand side of

= III+2,A .2 Akl a "I+2aA'' + 21 I'AII we have
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I - b 21''IAII

and so

I~yl :5 5 L&= M.
2aa 21la a

Notice in passing that M is independent of the magnitude of a. Before

giving the next Theorem which provides us with necessary and sufficient

conditions for the existence of an a 0 satisfying (2.17), we prove the

following Lemma.

Lemnma 2.3. Let l be a real nXn matrix, y and P real numbers Y 00,

and X(r) = a + jw be any eigenvalue of r. Then

(i) If

11+rl~ p (2.20)

then

+y)2 + w2  p 2 (2.21)

(ii) If y > 0 and p 1, then a < 0 or cr w 0 for every %Cy).

(iii) If y < 0 and P = 1, then a > 0 or c= w = 0 for every %(T.

(iv) Let F = TAT - , where A is the Jordan canonical form of T.

We set

O' = IT 'T- (p' i

If

'1 +YA4 < P,1 (2.22)

then (2.20) holds.

(v) If A is diagonal and

(T+-)2 + w2s(_I)

L___
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holds then (2.20) holds. In particular, if I is symmetric then (2.28)

is equivalent to (2.21)2

Proof. (i) Let v be an eigenvector of P corresponding to c + jw = X(F)

and fv1j = 1, w.l.o.g. Then

p 2 IlI+yr¥l 2- (I+Yr)vl = i+Y(a + jw)J

and (2.21) follows.

(ii) This follows trivially from (2.21) by noticing the (2.21)
-li

corresponds to a disk with center at -:Iwhich in case

y > 0 and P : 1, lies in the left half plane of the (cr,jw) plane.

(iii) See (ii) above.

(iv) Trivial.

(v) This follows by using (iii). If r is symmetric then T' =T -

and flT'jj II= T jVXmax(T'T) = I and thus p' = 1. 0

Theorem 2.2. Let X(A) = a + jw be eigenvalue of A.

(i) If E = 0 and (2.17) is satisfied for some a # 0 then for

X(A) it holds

2The assumption that A is diagonal in (iv) is essential. As a counterexample let

-- 1
2 -Ir=A= 1 T=T ,I'P1I

0 --

2

in which case (2.21) is satisfied for all Y: 0 <y 4 but for x
2  /.2'!xlii ~ ~+ A :!ly~""Iy/ > 1.

m .... .. . ,. .... ..... ..... .......
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0 ReX(A) < 0 or %(A) = 0 if c > 0

= Re%(A) > 0 or (A) = 0 if a < 0 (2.23)

1 2 w2  1 2
+ + 5

JJK 1,11 j l-!! I+2uA11
2 ua (2.24)

(ii) If e 0 and A - -eI, then any 0<yrI satisfies (2.19) and

IlK I I'1K R2 C (2.25)1' 2" 2 a

(iii) If e 0 0, A -CI and (2.17) is satisfied for some o 0, then

for any %(A) it holds

< -e or %(A) = -e if 0 > 0 (2.26)

> +e or %(A) = e if a > 0

and K1 1 , IIK2iL satisfy (2.11). Moreover lcI< .

(iv) If A# -eI (A# eI) is diagonalizable, A = TAT - I where A is the

Jordan canonical form of A, p' = IITI-IfT11 and for some y > 0 (y < 0) it holds

2 2 i 12 +2 (2.2( y) 2Y + ) - ((Cr - Y + w < (2.27)
pY2 p'y2

2(1+ (c2(1- eY) ) satisfies (2.17)
2(+e2(l -ey)

Proof. (i) (2.23) follows from Lemma 2.3 (i,ii,iv) ane (2.14) from (2.19).

(ii) The first part is trivial. (2.25) follows as (2.24).

Let = 1 Then (2.17) yields

b - e 2 11bI+A1H if c > 0

b - S Z I!bI+AI if - 0.
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1
Necessarily b - e > 0. Let y = (bJ , then

1 II+Y(A+ EI)I if C > 0

1I II+y(-A+ eI)1 if oe < 0.

We set T" + A + eI and we have

I a iI+YF I. (2.28)

(2.26) follows now from Lemma 2.3 (ii)-(iii).

(iv) We bring (2.17) to the form (2.28) and apply part

(iv) of Lemma 2.3.

If A is symmetric, then the existence of y satisfying (2.27) is

equivalent to the existence of a satisfying (2.17). For (2.17) to hold it

suffices I 2.v/tr[(I+2oA)'(I+2aA)] + 21fale. By using the fact llMl , tr(M'M)

it follows that the existence of an ce > 0 satisfying (2.17) is guaranteed in

the following two cases (assuming A is not a scalar).

(i) trA -e

trA'A < e 2

= (n-l)trA'A + (trA) 2 + 2CtrA + (2-n)e 2 a 0

S- (e+trA) - I'A
2e 2( 2 trA'A)

(ii) trA'A > 6 2

trA S -C

We shall now consider the stability of the closed loop matrix

(2.5). Let
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a' = 41!S l + 1S'!"

,2 =2~ ~~Hi

(2.29)

R1-b +,v (1-b) -4ay e

2 2ce2a

2 2 a

where a, e. q, b are as in (2.15).

Theorem 2.3. Let Re[X(A)] < 0

(i) If for some Ce >.0 it holds

1 2: 111+ 2caAj + 2Q' e (2.30.1)

(2.30.2)

01IS;IR~ 2 l R + (2.30.3)

then there exist K1, K 2, JJKA :S YR 2  i =1,2, solving (2.9) and A (2.3) is

A.S.

(ii) If for some -v > 0 it holds

1 \I+ 20eA + 2ae' (2.31.1)

1 > III+ 2'All (2.31.2)

IQ or ISoj 0 (2.31.3)

then there exist K1, K 2, !IK~fl ceR , i =1,2, solving (2.9) and A (2.5) is

A.S.

Proof. M1. (2.30.1) makes Theorem 2.1 applicable . 7 e have

I;I+ 2a'A1 = II + 20 (A-S aK-S aK ) '!IH + ZyAI!1 +4a2!SjK1.
12 2
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Since by Lemma 2.3 A will be A.S. if Il + 2c11 < 1 for some a > 0, it suffices

I+ 2iA~i + 4¢a2!!S1j1 K <1.

(2.30.2) implies R2 > 0. Using K = aK and (2.19) we have that it suffices

I 1+ 2ceA!! - I) R + 4a 2 ISI < 0
22

and since (2.14) holds for R = R2 it suffices

2 2 S!}2R2

4a2 !S!JR2 < ( 3 l1Si1+ !S 2 R 2+ lQ!
2 o0 2

which is equivalent to (2.31.3)

(ii): (2.31.3) implies that the inequality

a'c 2R2 + (!!I+ 2 a,- l)R + q < 0

is satisfied for all R: RI < R 5 R 2 where

1-11I+2All 
+ ,/(I-11I+2.A !) 24 2, ,2

R1 2 2

2ce a

R2 k R1 2 0. (2..31.2) implies R2 > 0. If the above inequality holds for

some R and ci, then (2.14) holds for the same R and a since a -5 a'. Therefore

there exist KI, K2 K i1i 5< aR 2 , i 1,2 solving (2.9). Repeating the

analysis of (i) we have that for A to be A.S. it suffices

2 ,2 fl ) 2 R2 +4a ISIIR 2 < (4i!Sl + +S aR

which holds by (2.31.3). C

If equality is allowed in (2.30.3)or 11Q! = !S = 0 in (2.31.3)

then the conclusions of (i) and (ii) in the given Theorem change and allow

stable, i.e., Re [X(A)] 0.
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The geometric interpretation of the conditions given in Theorems 2.2

and 2.3 is given in Figs. 1 and 2. Figure 1 corresponds to Theorem 2.2, parts i,

ii, iii, which say that a necessary condition for the existence of an a>0 satis-

fying (2.17) is that the eigenvalues of A lie in a disk centered at : with radius

r = 2 -c , for some > 0, which is equivalent to saying that all X(A)'s lie

in the open half plane on the left of the line el, (cy =-e), or at -e. Figure

2 corresponds to Theorem 2.2, part (iv), where it is assumed that A is diagonaliz-

able. It shows that if the eigenvalues of A lie in a disk as in Figure 2 with

radius r =  - - e) and centered at - then this a satisfies
,-, 2uc2
4P

(2.17) and thus (2.9) has a solution. If A is symmetric then p' = I and

e = 90 . If o < 0, then we have the mirror images with respect to the jw

axis of the circles, cones, lines depicted in Figures 1, 2.

Employment of a different function D in (2.10) and application of

Brouwer's theorem may in general provide different, perhaps better, existence

results. Another suitable 4 can be defined as follows. If K solves (2.9) and A

(and thus F) is A.S., then K= , where a>0, solves equivalently (see Appendix C)+O

o e  Q - iKSK - KJa2SKJ -JK + 02JZJ] e  t a t .  (2.32)

-i

Let (K) denote the right hand side of (2.32). Let also A = TAT , A

being the Jordan canonical form of A with mxm the dimension of the largest

Jordan block (m e n). Let also a, q, 6 be as in (2.15), a>0, and

p = i I T lT-

X max Re [(A)] < 0 (2.33)

rn-I (~ i+frl

rr(w) = 0 ij ' for w > 0,

i!!,
IT
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iw

a>O E

22a

[®e X(A] FP- 1567

Figure 1. Regions of eigenvalues of A in accordance to
Theorem 3.2 (i)-(iii).
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jw

2a__ _ _

Figure 2. Regions of eigenvalues of A in accordance to
Theorem 3.2 (iv).
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and C(m,a) > 0 be such that

rr(i/e(m,ce)) = 12ore "

Clearly e(m,ol) exists and is unique, for given e and m.

Theorem 2.4. Let A be A.S. and T, A, m, r, e(m,a) as above. If it

holds that

A -e(me) 1 (2.34)

then there is KEX which satisfies (2.9), and

i Kj <5 oR 2 = O I + J 1 4qa2 - 2 2 (2.35)
•2at p *2 p4 -r2  ap

In addition, if A is diagonalizable (i.e., m-- 1) then e(l,a) p 2 for

every a > 0.

Proof. Let K = aK, a>O, 11RI < R,R > 0. In order to use Brouwer's theorem

we ask for lI (K) 5- R for some c and R. It suffices

++00
- ~ Ft 2S- ij2 2 -- 2 cF

Sof e at[Q- Ka SKK~c jF 2SJK+ JiKJCYSJ J.e

[ + (3!Si + llSo 2 R 2 fo eFtlmdt R

or by using (D-1) (Appendix D)

a2R2 1
a R R + q !r 0 (2.36)

p T

which holds because of (2.33), (2.34). The rest is easy.

It is remarked that if A is diagonalizable, then (2.34) gives

- 2
r. p) introduction of V > 0 induces no improvement of the result, which

is in agreement with the fact that scaling cannot facilitate the existence of

solutions of (2.9). In case A has Re [X(A)) > 0, we can have results similar
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to those of Theorem 2.4 by employing 0 < 0.

The geometric interpretation of Theorem 2.4 is given in Figure 3

and shows simply that if the eigenvalues of A lie on the closed half plane

on the left of the line e21 (a = - e m ), for some o > 0 then there exists

K which solves (2.9). If A is diagonalizable then - e = _Op2 and since

p ;t 1, the line e2 is on the left of 6i" In this case a combination of

Theorems 2.2(iv) and 2.4 gives an easily verified sufficient condition for

solvability of (2.9).

Finally Theorem 2.3(ii) can be interpreted along the same lines as

Theorem 2.2, using Figures 1 and 2, where G' is used instead of C. So,

if e' 0, A is diagonalizable and all X(A)'s lie in a disk as in Figure 2

with C' in place of C, then(2.9) has a solution and the closed loop matrix

is A.S. If e' = 0 and A is diagonalizable (then flQfl = 0, e = 0), then if

the eigenvalues of A lie in the interior of the disk in Figure 2 the same

conclusion holds. The version of Theorem 2.3 with Ce < 0 and ReX (A) > 0 results

to A unstable, i.e., Re [X(1)] > 0 and is thus of no interest to us.

We close this section with five remarks.

(i) The only assumption on 0,, R. 's used in developing the proofs in this
-1 2J

section was that R,1 , R 21 exist. Neither Qi 0 or - 0 or Rij > 0, nor any

controllability, observability, or optimality conditions were used.

(ii) Q = Q + KSK + JIJS J 0 (it suffices R and 2 k 0) and A is A.S.,(ii)0 I1QKK JJ~JJtR2 R21

since x 0
K + 0 K=-Q

0 L A-

a standard result in Lyapunov theory yields K k 0. Since J= x' K.x (see

[4] w we will have J* z 0 for every xo , as it should be expected in case

Qi' R i t 0, , ij 1, 2.i '
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jw
63

a> h

FP-5869

Figure 3. Regions Of eigenvalues of A in accordance to
Theorem 3.4.
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(iii) Consider the single Riccati

-1 (237
KA + A'K + Q - KBRIBK 0 (2.37)

where R > 0 and A is A.S., with Q not necessarily positive definite. Then

Brouwer's Theorem provides results which can be used to easily verify whether

the frequency condition of Lemma 5 in[ll] holds. It is easy to prove (as

in Theorems 2.1, 2.2) that

(i) if there is u > 0 such that

1 ! II+ 2aAI + 2a TjQII !BR-B'I (2.38)

* then (2.37) has a solution K. If in addition

o 121 SI1R 2"  <*(2.39)

I > Il+ 2iyA

where

1i- I+2cAfl +1(1-fl I+21+AI )2 4II fluI BR"B'1 (R " -1I2 otS! 41Q'IB (2.40)

then A -BR- IB'K is A.S.

(ii) If there is an C > 0 such that

1 J !I+ 2cAi\ + 2\2 " I/fQ flBR-B'1 (2.41)

then (2.37) has a solution K and A - BR IB'K is A.S.

Let now Q I -C'C : 0, and assume (A,C) observable, (A,B) controllable.

Using Lemma 5 of [111, we see that (2.38) and (2.39), or (2.41) imply that

I.- B'(-jw-A')C'C(jw-A)-IB 0 for all real w. (2.42)

Also, since K-- e t(Q- KSK)e F t and Q : 0, it will be K S 0.

(iv) In order to guarantee the fixed point property of (K), one could have
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employed a contraction mapping machinery. Then should map a closed set

D a X into itself and in addition § should be Lipschitzian with Lipschitzo

constant L,O L < 1 on Do. But since § is quadratic in K D should be

bounded in order to guarantee that is Lipschitzian there. However this

amounts to D compact and we could consider Do a ball BRw.l.o.g.. So, in

order to use the contraction mapping Theorem we should have made assumptions

to guarantee L < I in addition to those made to allow the use of Brouwer's

Theorem and this would result in a weaker conclusion.

(iv) The assumptions of Theorem 2.1 guarantee the existence of K1, K2

solving (2.4), which lie in BRI. Thus if the solution of (2.4) is unique it will

be in BR. If not, then there may be additional solutions K,K 2 in BR,

R>R 1 which are not in B which solve (2.4).

2.2.3. Extensions

Let us now try to relax the assumption on A to be A.S. Two approaches

will be considered. In both of them, we use the solution of an appropriately

defined auxiliary problem in order to show existence of solutions to our

main problem via Brouwer's theorem.

Consider first the optimal control problem

ru
x Ax + [BIB 2 ] 1 x(O) = x, t E [0,+-)

u 2  (2.43)
UlN

ain (x IQx+ u u' )dt
u 
2

where

iL
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RIR 21 
"

QI+ Q2 2 0 R, 02 ' , 2, = • (2.44)

R22+R 1 2  0 R[ 0 2
2;

with Rl, 2 > 0. Under certain assumptions (contro1ability-observability

and Q 0, or see Theorem 2, page 167 in [141 or Remark (iii) in (2.3))

there exists K satisfying

0 = KA + AIK + Q - K(SI+S 2 )K (2.45)
with

~ B,', B kBR1 1'l' 2 2 2

such that

u2 *-1B (2.46)

211R 2  2

solves (2.43), and such that

A = A - (SI+S 2 )K (2.47)

i.e., the closed loop matrix for (2.43), is A.S. Let

KI = K + A, K +A (2.48)
1 1 2 2

be substituted in (2.4) and by using (2.45) we obtain

3For this to hold it suffices Rii > 0, Rij t 0, i @ j, i,j = 1,2.

• A ..... .- .. .. ., .. . . .,- = " . - i ...
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0 1 A + A'&l + L (S 1+S 2 - S1- S2)K + R(S 1 +S 2 " Sl S-2)L

+ A2 (So - S2 )K + K(So - S2 )A2 - AISI I - IS 2A2 - S2A

+ 2 12 + 2  1 2 1 1S1 1-s 2 22K
Q1 - Q2

A2S olA2 + 2 + K(S1+S2 + 01- S 1 - S 2 - S2)K (2.49)

0 = A 2A + 'A 2 + Am(S+S 2 - SI - S2)K + K(SI+S2- SI - S2)M 2

+ A1 (So2- S1 )K + K(So2- SI)A I - A2S2A2 - A2SIA I  AIS16 2

Q2"QI

A IS o I  2 -- + K(SI1+S 2+S o2- Sl - $ 2- SI) K.

where Si , Soi are given in (2 .8).

Let a be as in (2.15) and

1o 0

= 'i + 2-S:~~~
t l (gl1+ 9 2 - S I"-s2 )11 + Pi

Pl - max !IK(S ol" S 2)!! !!i(So2" Sl1)111 (2.50)

=max 2 + K(S1 + $2 + S So1- S I - S 2 - S 2)Kl ,

O2" Q1

2--+ (l I+ 2 + S o2 " SI - s2 - Sl)0l

I I I + 24'AlI + 20: p

"R2= ''b 7(lb2 2"t 22-

2 
2a

The proof of the following Theorem is similar to the proofs of

Theorems 2.1 and 2.3.

6 L a...
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Theorem 2.5.: Let A, i, q be as in (2.47), (2.50), a # 0, then

(i) If for some c > 0

i II+ 20A!I + 2(, (2.51)

then there are A,$ A2 such that K1  K + A1, K2  K + t 2 solve (2.4) and

il~i! '; C 2"

(ii) If in addition to (2.51)

I>b

(2.52)
a lsfli2 < a+ 2ci R2 +q

then the closed loop matrix A (as in (2.51)) is A.S.

(iii) If for some a > 0

I. 1 I+201111 + 2a(p+V(a+ISj!)q ) (2.53)

l> >

q or Is Oi or p I 0

then both (i) and (ii) above hold.

Proof. The equation (2.49) can be written

= a + P'6 + '(A)

+ K(S 1+S 2+S ol-S -S 2 -S 2 )K 0+4
. 0 Q2- Ql

0 2 +(I +$2 +So02-SI- 2-8S1 )K+-+ K(S s~-Sss

where

A 0

0 A

L)
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Using similar methods as in the proof of Lemma 2.2, we conclude that it

suffices to hold
a2R + (III+ 2cij- l+2p]R + q : 0 (2.54)

in order for (2 .49)to have a solution A1, A2 where f 1 1, 11A2 1 ! (YR. The

rest follows as in the proofs of Theorems 2.1 and 2.3. o

The usefulness of the pre3ented approach is clear in case the

game is used to describe a situation where two independent controllers

desire to achieve the same objective using slightly different information

(Q;) or control effort (Rij).

Consider now the two independent control problems

x = Ax + BIul, x(O) = X0, tE [0,+-)

CO (2. 55)
minimize f(x'Qlx + uiRllu,)dt

and

x = Ax + B2u2, x(O) = xo, tE [0,+) (2.56)

minimize f0 (x' x + u R2 2 u2 )dt.

Under proper assumptions the two Riccati equations

0 = A'K1 + KA + Q- KlSK 1  (2.57)

0 = A'K 2 + K 2A + Q2 - K 2s2K2
hvsouin -= -i ,- -i ,

have solutions K 2P, the u, = -RIIBIKIX, u2 = -R2 2B2K2x solve (2.55) and

(2.56), and

A,-A S1 K, A2 A- S2K 2  (2.58)

are A.S. Let
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-- 1 0 KI  0F A 0* F- SK, K =

K< K (2.59)

K1 K + A 1 2 K2 =' 2 +A 2

A 0
A I 2

Then (2.5) can be written

0 F 'A + AiF6- AJSJ - JLSJA + JAJSoJLJ - KJSKJ - JKSJK

(2.60)
+ JJS oJ-KJ KJSAJ - AJSKJ - JKSJA - JLSJK + JAJS oJKJ + JKJS JLJ.

Let also

= P!KS + IKJSo11 + 1IKJSjj
0 

(2.61)

q= IjJSKJ + JKSJK - JKJSoJKJl.

I+ 2ot + 2c9
R2= I" -+b+ '- 2"'2q

22 2
2 2ca

Theorem 2.6. Let F, -, q be as in (2.59), (2.61), a # 0

(i) If for some a > 0 it holds

1 I+ 2j!I + 2a[j+Faq ] (2.62)

then there exist Al, A2 such that K1 + AI' K2 + Am solve (2.4) and !i 2 .

(ii) If in addition to (2.62)

S>b
(2.63)

I2< 2 S 2 + 2c ('IKJS + 17JS! )2 + -q
2 o 2 o 2
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then the closed loop matrix A (as in (2.5)) is A.S.

(iii)If for some v > 0

2t III+ 2ci. + 2c[e+ a( q!Sl)] (2.64)

l>b

or 1 0, or J1KJS !1 + I1EJSH 0

then both the conclusions of (i) and (ii) hold.

Proof. Working as in Theorem 2.5, it suffices to hold

a2R 2 + [I+ 2i - I + 2aIR + q 0 (2.65)

in order for (2.60) to have a solution , where 1P1Al i cR, and so on. 1

The usefulness of this approach lies in the fact that the results

wi'ich pertain to the case where the system is controlled separately by the

decision makers can be used to check Lhc existence of the solution when the

two decision makers control it jointly and use Nash strategies.

The Theorems 2,2,2.3,2.4 and the interpretations in Figures 1, 2, 3

hold also for the two approaches presented, with the appropriate modifica-

tions. For example for Theorems 2.5,2.6, Figures 1, 2 and the first approach

one should use A, P +Vaq, 4 +V(+ISl) instead of A, e, e respectively.

Finally, note that the existence results in all cases developed

previously are dependent on the parameter e (or e'). Since 6 is a function

of the weighting matrices and since rescaling of the criteria will affect the

weighting matrices it is of interest to point out how this scaling affects

the existence results. Nothing changes in the game if we have J' = riJ.
1 11

instead of Ji, r > 0, i = 1,2. So considering riQi, riRij instead of Q,,

A
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R.. we haveiJ
11 111So l l o_ _

max(r Ql ,r 2 1 JQ 2 !)[3max ( ) +max( -$2)__1 2'

1' r ,r 2 ) +mar( rl r2)

or

2 2 ii I'
= (r) = max(-, lQ 2).[3max(rl Sl!I S211) + max(rflSol 1!,o2!

r 2'1) .11 ')

r2
where r - 2- Carrying out the minimization of s2(r) with respect to r

we find the minimum e

G /3max(IIQlW . SllI i Q lK.flS2'!] + max [H Q1l ISo!,Q 2  ISo 2H] (2.66)

The r at which e(r) becomes minimum is given by the following. Let

1Sfl S0 HI 2  S 2f -

rot min(-, ) , r= max(7-7, - ) r •

If r : r Y r then r is any point in [r,r I.

---If r., :5r r then r r.

If r < r. : r then r is any point in [r,,r].

For c' as in(2,29) the same analysis holds and the optimum e'

is given by a relation exactly the same as( 2.6 6) but with 4 multiplying

the first term instead of 3. We can consider in all of our conditions that

€, (e') is given by (2.66). Notice also that a similar procedure will give

the minimum values of p. + /aq, see (2.50), (2.61). It is interesting to

notice that if r rt then all r: r : r ; r. give the same .

Actually, as (2.3) indicates, the existence of solutions for the game should

not depend on multiplying J1 or J2 by a positive constant. Our conditions

have at least preserved this property for an interval [r,r ] or [r ,r].
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2.3. Finite Horizon: Existence of Closed Loop Nash Strategies and Solutions
to Coupled Differential Riccati Equations

2.3.1. Problem Statement

Let us consider the dynamic system

=Ax+BluI + B2u 2 (0 ) x o , t (0, TI (2.67)

the two cost functionals
T

J.(u u [x (T)'Kix(T) +0 (x'Qix+u'R u +u!R u)dt

(2.68)
i, j = 1,2, i#j

and the associated Nash game, see [i]. The state x and the strategies ul, u2
n m I m 2

take values in R , R and R respectively. The matrices A, Bi, Qi' Rij'

are real valued piecewise continuous functions of time and of appropriate

dimensions. We also assume K. = K' > 0 constant real matrices, Q (t) = Q (t)' >0,

R ij (t) =R ij (t)' >0, R ii (t) >0, VtE[O,T), where the time interval [0,T) is

assumed fixed.

We restrict the admissible strategies to those which are linear in x,

i.e;

u i(t ) = L i(t)X(t), i = 1,2.

It can be shown (1I) that if such an equilibrium Nash pair of strategies

exist, it will be given by

u. - B P x, i = 1,2, (2.69)
i  - ii , .

where P1, P2 satisfy a system of two coupled differential Riccati equations.

This system can be written as:
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-P=F'P+IPF+Q -PSP -Pis PJ -JPSJP+JPJS 0JPJ (2.70)

P(T) = Kp tE[O, TI

where

r A

F=

0 A:

0 B R B'
2 2221

PBR -1R R 1B' 0 '2 22 12 22 2
S=

0 B R R R B'(.1

Q 0

0 
i

01

j I =nxn. unit matrix

I 0

P1 0

PP

The purpose of the present paper is to give sufficient conditions under which

(2.70) has a solution over [0, TI.



50

2.3.2. Derivation of the Sufficiency Conditions

By setting

P(t) = P(T-t) (2.72)

we can consider equivalently to (2.70)

P =FP F + - PS P- Pis SPJ-JPSi P+J Pi S J P S

(2.73)

P(O) = , 0 tE[0, T)

where

x~)= X(T -t), t E (0,T].

If P(t) is a solution of (2.73) on [0,t') where t' < T then

I!P(t)I P '!P~)12 + alIi(t) Ij + q (2.74)

where 111 denotes the usual sup norm of a square matrix calculated for

fixed t, and

cymax21A(t)l! ; 0 < t < T)

Omax31S(t)1! + !IS (t011; 0 < t < T3 (2.75)

q max[ I!Qt)! ; 0 < t < T)

The a, 0, q are finite due to the piecewise continuity of the matrices and the

finiteness of [0, T]. Clearly cy, 0, q > 0. We assumie 0 #0, since if 5 = 0

then (2.70) is a linear differential equation and the solution exists for T

arbitrarily large.

Consider the scalar differential equation
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J y2 + cy+q , y(O) =yo t > 0. (2.76)

Using Corollary 6.3 page 32 of [161 we obtain that:

if y(O) > P(0')!I and y(t) is a solution of (10) on [0,T] then the

i solution of (7) exists on [0,T] and 1!P(t)II y(t), tE [0,T].

I
We thus conclude that a sufficient condition for the existence of a continuous

l solution P(t) of (2.70) over [0,T], is that

I y(O)> KI0and T < tf (2.77)

where [0, tf) is the maximal interval of existence of the continuous solution

of (2.76).

A straightforward investigation of the behavior of the solution of

(2.76) yields the conditions under which (2.77) is satisfied. We state the results

of this investigation in the form of a Theorem.

Theorem 2.7: Let B 0 and set

12 _ 4$q, Pl 2 ' P2 20

j (i) If A O, and
2"

T of+ 211K1f 
(2.78.1)

then the solution of (2.70) exists and

I
I 4Although Corollary 6.3, page 32 of [16J,is stated for the vector case, its

extension to the matrix case is trivial.I

1 lI



52

llP t~l 11 ______c t [o

+ I25Ko , tE [0,T]. (2.78.2)

(ii) If A > 0, p2 < p1  0 0, and

T < n ll--Po ) (2.79.1)

then the solution of (2.70) exists and

B (p 1 -P 2 ) (T-t)
IP~tP i - p 2 Ce

1- Ce (2.79.2)

C, tE [0,T].

(iii) If A < 0, p1 = k + i%, p2  k - iX, k= , -i and

T(< [TT-2Tan (0 - k (2.80.1)

then the solution of (2.70) exists and

I P(t) 1 < t k + X tan (X5 (T - t) +C)

(2.80.2)

C = Tan ( ), tE [0,T]

where Tan "1 is the inverse tan on (- ,

If A M 0, Qi = 0, Ki = 0 and Bi, R.j are constant, then case'i holds

and T can be taken arbitrarily large.
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2.4. Finite Horizon: Uniqueness of Analytic Nash Strategies for

Analytic Differential Games

2.4.1. An Analytic Nash Differential Game

Consider the sets U1 and U2 defined as follows

I (to,tf) R, fixed

(2.81)

j SjSRn xI, S open, connected and projection of S on I= Il

in.
fu u. : S.-R . for some S. Er, u. analytic on Sil, i= 1,2. (2.82)

UI and U2 will be called the strategy spaces. Consider also the fixed time
2mm

interval [t,tf I C I and the functions f : Rn x R IX R 2X I - Rn , gi : R - R,

*n m1  m
L. :R X R X R x I R, i = 1,2, which are analytic everywhere in all their

arguments.

For a given (u1 , U 2 E U1 X U2 with S.n S2 E 1 we consider the

dynamic system

•(t) f(x(t),u 1 (x(t),t),u2 (x(t),t),t) (2.83)

X(to) = X0, (Xo,to) E Sins2, t 0 t0  t f*

Definition 2.1: A pair (ul,u2)EU XU2 is called playable at (x ,t ) if

sin S2 EZ and the solution of (2.83) exists over [totf]. (It will neces-

sarily hold: (x(t),t)ES lS tE[t ,tf].)
1 2 0

For a related definition of playability see [23]. If (ulu 2)

j is playable at (xo,t0 ) we consider the functionals

tf

Ji (utu2) = gi(x(tf)) + , Li(x(t)t),u
2 (x(t),t),t))dt

i = 1,2.

Definition 2:2:A pair (u u2) E U1x U2 is said to be a Nash equilibrium pairI
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for the Nash game associated with (2.83) and (2.84) on a set S =SC(RnX[ tfl)

for some SEE if and only if:

(i) it is playable at all (xo0t) S

and

(ii) J1 (Ulu 2) J1 (ulu 2 ), !(Ul ,u2) .U1 X U2 playable at (xo,to) (2.85)

J2 (ultA2 ) g J2 (ulu2), V(UlU 2) lUX U2 playable at (xo,to) (2.86)

for all (xo,t0) E so.

The following theorem concerns the existence and uniqueness of

Nash equilibria.

5--
Theorem 2.8: Assume that there exist two analytic functions u and u

m.M. 1 2n Rn R

' x IX )n nR i=1,2, such that Ul(Y,Sq,q 2 ) and -d2 (y,s,ql,q 2 )

are the unique global solutions 5 of the minimization problems

min q.If(yulU2,s) +Li(Y,U,u 2,S) (2.87)

u. ER
1

where

(y,s,ql,q2) CR XIXR n XR

Then a necessary and sufficient condition for (u-,u 2) EUX U2 to be a Nash

equilibrium pair is that

VI (Y,S) _V2_(YS)

u*(y,s) = Ui(Ys, (y , 2y ) i = 1,2 (2.88)

5 In relation to this see for example [21], p. 152.
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J where V1 (y,s), V2 (y,s) are the unique real valued analytic solutions of the

system of partial differential equations

I 2Vi BV. IV, 'V 2  _- bV 2+s - f(YUl(Y'S' _-' -)'U2(Y'S' y'yS

I vI  aV2  _ bvI 1 v2
+Li(Y' 1 (y's' -' -Y),'U 2 (y'S' -y ' y-),s) = 0 i 1,2 (2.89)

with initial values

Vi(Y,tf) = gi(y), i=1,2, VyER n. (2.90)

If such (Ul,U exists, then it is unique in U1 X U

Proof: Let (u ,u2)EUlx U2 be a Nash pair. Then the functions

tf
v (y,s) g £.(x(tf))+f L (x(t),u*(x(t),t),u*(x(t),t),t)dt (2.91)

, i = 1,2

where

,k(t) f(x(t),u*(x(t),t),u*(x(t),t),t),x(s) =y, t [stf] (2.92)

are analytic in y,s (see [201, p. 44 and [24], p. 87, Theorem 4.3) and

are the solutions of (2.89), (2.90). This is true since '2.89), (2.90) are

just the Hamilton-Jacobi partial differential equations for the two control

problems (2.85) and (2.86) (see [241, p. 83, Theorem 4.1 or [22], Theorem I). The

I sufficiency part follows from Theorem 4.4, p. 87 of [24]. The uniqueness

of the solution of (2.89)-(2.90) within the analytic class is an immediate

consequence of the Cauchy-Kowalewsky theorem (see [25], p. 40).

l
I
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One can obtain the system (2.89)-(2.90) of partial differential

equations, under assumptions much weaker than ours. Nontheless, the results

available concerning existence and uniqueness of solutions of general systems

of partial differential equations are complicated. Also, they usually assume

boundness of the range spaces of the sought solutions and of the domains of

the independent variables, assumptions which we did not make.

2.4.2. The Linear Quadratic Case

Next, we apply Theorem 2.8 to a linear quadratic game. Consider

(see (22])

Ax + BlU I + B2u 2 + f(t), X(t ) = xo , t ( [to,tf)

Yl Clx' Y2 
= 2x

tf (2.93)

J t I~. f f [(zi -yi)'Qi(zi -Yiy) + ui'R iiui +uR ijujdt +

0

+ x(tf)' K ifx(tf)' , i = 1, 2, i#j.

where A, Bi, f, Ci' Qi' Rij' zi are analytic functions of t over all

(t', tj) and Q, = Q! > 0, Rij = R!j > 0, R., > 0, Vt E[t, tf

K = K' > 0 are constant matrices. All the matrices are assumed to be ofif if -

appropriate dimensions.

Corollary 2.l.Assume that K1(t), K 2 (t), gl(t), g2 (t), Y 1(t), 2 (t) are

solutions of the differential equations
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K. KISIK + KiSIKI + K2S 2 Ki
1 1i 2ii 2.1

KiS 2K2 - KiSjKj - KjS ijK i

A'K i - K.A - KiS - C1 Qi Ci

= KiSlg I + KISIg i + KiS 2g 2 + K2 S 2 g i  (2.94)

I

I ((KiSigi + K.S..g. + K.Sijgi) -A'gi - CiQz . +Kif
2'J 1 1 1 3

lgi + gS 2 gi- giSigi- iijgj2 ii i- i

Ki (tf) = Kif, gi(tf) 0, i(tf) = 0, i 1, 2

where

S BR B! i = 1, 2
i Biii

-I -1
S - B R R .R. B!, i# i,= 1, 2
ij j ji ij jj j

S..--0 i -j

Then

u (xt) = -R 1 B! [Kix - gj, i = 1, 2

constitute the unique Nash equilibrium pair in U1xU2 for the Nash game as-

sociated with (2.93), for any (xo,t )E Rn x [tt f.

Proof. Ki. gi, 4i, are clearly analytic functions of t. The function

Vi(y, s) x' Kix " g Ix+@i are solutions of (2.89) and (2.90) (in the

form that (2.89) and (2.90) assume for the problem (2.93)). Thus, the

previously stated Theorem applies.
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CHAPTER 3

LEADER-FOLLOWER STRATEGIES AND NONSTANDARD CONTROL PROBLEMS

3.1. Introduction

In the present Chapter we analyze a Leader-Follower differential

game with fixed time interval and initial condition xo, where the leader

has current state information. Thus, the strategy space of the leader is a

space of functions whose values at time t depend on x(t), x and t, i.e;
au

u(t) = u(x(t),t;x0). Because ax appears in the follower's necessary conditions,

the leader is faced with a nonstandard control problem. This problem is

solved here. Actually we solve a more general class of such nonstandard con-

trol problems, of which the leader's problem is a special case.

The structure of this Chapter is the following. In 3.2 a two-level

L-F differential game is introduced. This game leads to the consideration of

a nonstandard control problem which is studied in 3.3. In 3.4 we use the re-

sults of 3.3 to study further the game of 3.2 and in particular we work out a

linear quadratic -F game. In 3.5 the relation of the L-F game to the Principle

of Optimality is investigated.

Two Appendices to this Chapter are given at the end of the Thesis.

3.2. A Leader-Follower Game

In this section we introduce a two-level L-F game and show how it

leads us to the consideration of a nonstandard control problem. This non-

standard control problem falls into the general class to be considered in 3.3.

Let
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Rn  l 1mn

U =Ulu: R X[totf] R1 , u(x,t)E R for xERn and tE[to,tf,

u (x,t) exists and u(x,t), u (x,t) are continuous in x and

piecewise continuous in t) (3.1)

m2
V = tvv: [t0,tf] - R , v is piecewise continuous in t). (3.2)

Consider the dynamic system

o '
(t) = f (x(t), I (t), I (t),t),I x(t o )  xo , tE[to t f ]  (3.3)

and the functionals

t f

Jil(Uv) = g(x(tf)) +J' L(x(t), U(t), ;7(t),t)dt (3.4)t
0

tf

J 2 (u,v) = h(x(tf)) + M(x(t), i(t), F(t),t) (3.5)
t
0

where uE U, vE V, x is the state of the system, assumed to be a continuous

1 nfunction of t and piecewise in C w.r. to t, x :[tot I- R , and the functions
o'f

m m m m

f:RnXR 1XR 2X [totfI-Rn g,h : R -R, L,M:Rn XR R 2X [to'tf] -R,

are in C w.r. to the x,u,v arguments and continuous in t. The u and v are

called strategies and are chosen from U and V which are called the strategy

spaces, by the two players, the leader and the follower respectively. With

the given definitions, for each choice of u and v, the behavior of the dynamic

system is unambiguously determined, assuming of course, that for the selected

pair (u,v) the solution of the differential equation (3.3) exists over [to~tf].

1 Let us assume that a LF equilibrium pair (u*,v*)EUXV

exists. For fixed uE U, Tu is determined by the minimization problem

I
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minimize J 2 (u,v)

subject to: vE V (3.6)

x = f(x, u(x,t),v,t), X(to) = 0o tE (tot f

and thus, applying the Minimum Principle we conclude that for vE V to be in

Tu, there must exist a function p : [t ,tf - such that

x = f(x,u,v,t) (3.7.1)

Mv + fv p = 0 (3.7.2)

-p = M + u M + (f +u f )p (3.7.3)

x(t = x , p(t h(x(tf)) (3.7.4)
0 0 fax

We further assume that U is properly topologized. Conditions (3.7) define a

set valued mapping T' : U - V. By using the nature of the defined U and V

and the fact that (3.7) are necessary but noc sufficient conditions it is

easily proven that

(i) Tu T'u

'ii) J 2(u,v') J2 (u,v) V : v' E T'u, vE Tu,

(iii) Tt u*nTu n [v 0.

Notice that J2 (u,v) takes one value for given u and any vE Tu, while

J2(u,v'), v'E T'u does not necessarily do so. We assume now the following.

Assumption (A)

Jl(u,v') 1 Jl(U,V) for v' E T'u, vE Tu, uE UN (3.8)

1 N

where UN is a n.b.d. of u in U.
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For (A) to hold it suffices for example: T = T' on U. We conclude

that if (A) holds, then u* is a local minimum of the problem

minimize J1 (uv)

subject to: uE U, vE T'u

or equivalently

minimize J 1 (uv)

subject to: uEU, vEV (3.9)

x f(x,u,v,t) (3.101)

p = Mx + u M + (fx +u f )p (3.10.2)

Mv + fvp = 0 (3.10.3)

ah(x(tf)
x(t) = X, p(t ) (3.10.4)

0 f

The problem (3.9) is a nonstandard control problem of the type to be considered

in the next section, since the partial derivative of the control u w.r. to x

appears in the constraints (3.10) which play the role of the system differen-

tial eauations and state control constraints, with new state (x',p')'.

Notice that the leader uses only x(t) and t in evaluating u(x(t),t) and not

the whole state (x',p')'; i.e., the value of u at time t is composed in a

partial feedback form with respect to the state (x',p')'; (recall the output

feedback in contrast to the state feedback control laws). If one were

concerned with a LF game composed of N (> 2) hierarchical decision levels

([32] , (331), then the leader would face a nonstandard control problem where

ISee Appendix E.
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the N-th partial of u with respect to x would appear.

We will assume that the state-control constraint (3.10.3) can be

solved for v over the whole domain of interest to give

v = S(x,p,u,t) (3.11)

where S is continuous and in C w.r. to x and p. This assumption holds in many

cases, as for example in the linear quadratic case to be considered in section

3.4. In any case, direct handling of the constraint (3.10.3) by appending it,

or assumption of its solvability in v, does not seem to be the core of the

matter from a game point of view. However the followinq remark is pertinent

here. Assume that we allow vEV, where
m 
2

V [viv : Rn× [tot f ] - R , v(x,t) piecewise continuous
(3.12)

in t and Lipschitzian in x where xE Rn and tE [to tfil

instead of vEV. The assumption of solvability of (3.10.3) will again give

v(x,t) = S(x,p,u,t). (3.13)

Since v(x,t) will be substituted in the rest of (3.10) with S(x,p,u,t) from

(3.13), the leader will be faced with exactly the same problem as after

substituting v(t) with S from (3.11). Therefore, no additional difficulty

arises if one allows V instead of V and assumes solvability of (3.10.3)

Substituting v from (3.11) to (3.10) we obtain

tf

minimize. J(u) = g (x(tf)) +f L(x,p,u,t)dt

u E U to

subject to:
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S F1 (x,p,u,t) (3.14)

p F 21(x,p,u,t) + UxF22(x,p,u,t)

ah(x(tfd))

x(t o ) = xo, P(tf)= -ax

where L, F1, F2 1, F2 2 stand for the resulting composite functions.

problem (3.14) is a nonstandard control problem like the one treated in Sec-

tion 3.3 where (x',p')' is the state of the system.

Besides the procedure described above which leads to the considera-

tion of the problem (3.14), there are other cases in which such problems arise.

For example, in a control problem where the state x is available, stochastic

disturbances are present, and the time interval [t ot ] is very large,
0' f

synthesis of the control law as a function of x and t is preferable over a

synthesis not using x (open loop). In addition, u might be penalized in

the cost function or be subjected to bounds of the form 1U (X(t)3t)j K,
x

tE [t 0 ,t f , where K >0 is a constant.

3.3. A Nonstandard Control Problem

Consider the dynamic system described by

11 2 m; (t) = f(x(t),ul(hl(x(t),t),t),u2(h 2 (x(t),t),t),...,um(hm(x(t),t),t),

u (h I(x(t),t),t)' ., x (h (x(t),t),t),t) (3.15)I x

x(t 0  X x0, tE [t 0 t f-

1

4.,
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and the functional
t f

J(u) = g(x(tf))+r L(x(t),u (h (x(t),t),t),...,u m(h m(x(t),t),t),
t

u(hxt),0t), .... u m(hm(x(t),t),t),t)dt (3.16)
X X

n+m-mn+l Rn n-+mmn+l n i , n+l
where the functions f :R R, L :R -R , h R -R

•. n 1
i = ,...,m, g :R -R are continuous in all arguments and in C with respect to

the x, u, ui. The functions h
i :R -R , are continuous, and in C w.r. to x.2

The solution x of (3.15) is assumed to be continuous and piecewise in

I
C w.r. to t. The time interval ft , tf] is considered fixed w.l.o.g. (See [35],

page 27). We want to find a function u where

u

m,

o' f6
iii[t 7 ii

ui(hi(x,t),t) exists and u (h'(x,t),t),ui(hi(x,t),t) are continuous in xX '' X

and piecewise continuous in t, for xERn, tEt ot f , i=l,...,m so as to

minimize J(u). We denote by U the set of all such u's. Therefore the

problem under investigation is

minimize J(u)
(3.17)

subject to uEU and (3.15)

2 The restriction h E C2 w.r. to xis somewhat strong. For example, the case
h(x,t) = x if to ! t < tl, h (x,t) = 0 if t < t 5 t i.e. the state is
available only during a part of the [to, tfl i s2not included. Nonetheless,
it can be approximated ar itrarily close by a C function, like any function

which2 is only piecewise C . Consequently, from an engineering point of view,
h E C w.r. to x is not a serious restriction.
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This problem is posed for a fixed time interval [to, t f and a fixed

initial condition x (t) x. Therefore the solution u , if it exists,

will in general be a function of to, tf, X0 , in addition to being a function of

h(x,t), t, but we do not show this dependence on to, tf, x0 explicitly.

We use the notation

3u lou

f mXn matrix, Lu = 1 . mXl vector

f ~___L
k um  au m _

fi a 2 nXn matrix, i ,.,ma(u) '

L l (3.18)
=~ nXn vector, i= 1, m

Li (u i ) ' x -l...,

au yl t) i i yj - q ERq

J yJ

3.

ii

Ui (ul,...,u ) u ii =qi X qi Hessian

ui 6 hi(x.t)
x x, nxl vector i ,. m

... • u1  nXm matrix.x .XX

k .....
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It should be pointed out that the arguments used in Classical

Control Theory for showing that for the fixed initial point case, it is

irrelevant for the optimal trajectory and cost whether the control value at

time t is composed by using x (t) and t or only t, do not apply here in

general. If ul t  u (t), t E [t , t f, then ux = 0 and this changes the

structure of problem (8). Consideration of variations of u is also needed

and this was where the previous researchers stopped, see [29]. This problem

is successfully treated here. We provide two different ways of doing that,

the first of which is based on an extension (Lemma 3.1) of the so-called

"fundamental lemma" in the Calculus of Variations (see [36]).

The following theorem provides necessary conditions for a function

u G U to be a solution to the problem (3.17) in a local sense; (we assume that

U is properly topologized). It is assumed in this theorem that the optimum

u has strong differentiability properties, an assumption which will be relaxed

later, in Theorem 3.2. The proof of this theorem is based on the following Lemma.

n
Lemma 3.1: Let M:Eto t f -R, N. Fto) t f .R, i1 ,m, y : to t V-Ro'f f. f '

be continuous functions, such that

tf m tf

J M'(t)cp(y(t),t)dt+ P N!(t)QDy(y(t),t)dt : 0t i=l i .

for every continuous function m :R X [t ot f-Rn, where ), l. m) and

is in C w.r. to y. Then M, N1 ,...,N m are identically zero on -to,t f.

3This holds if i) the set of the admissible closed loop control laws contain
the set of the admissible open-loop control laws and ii) if u* is an optimal
closed loop control law generating an optimal trajectory x*(t), then
v*(t) - u*(x*(t),t) is an admissible open loop control law.
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Proof; The choice i- (0, ' ,0 p0'... ,0)', iP: [totf] I-R, I

continuous in t, i=l,...,m, yields M-0 on [t ot ]. Since M=O, the

choice yi (0,... ,Y 0, 0)' , iP , where d
tf

;[t, tfRn, 4 continuous in t, results in N:(t)*'(t)dt =0, for every-tl fo R

such , and thus N. =O on Ft ot f is proven in the same way as M=0 was

proven. 0

The conclusion of the above lemma holds even if the restriction
iki kni i.cp (x,t) = Y .. Yn .*t is imposed, where kli,...,kniX i are nonnegative

integers, since the polynomials are dense in the space of measurable functions

on Fto~tf].

Theorem 3.1 : Let u E U be a solution of (3.17) which gives rise to a trajectory

r I (x*(t),t)ItE[totf , such thatu iare in C w.r.zo x in a n.b.d. of
yn

(hi(x*(t),t),t),t E[to tf]). Then there exists a function p :[totf I- such

that qi u .

= +fxp+ 7 E u" h"(L +fP) (3.19)
X i= j=l .xx j 1.9

Lu +f u p = 0 (3.20)

x h (Li +f i p) = 0, i1,...,m (3.21)

bg(x(tf))

ff
P(tf) - 3 (3.22)

hold for t E[t ot where all the partial derivatives are evaluated at

x*(t), ui*(hi(x*(t) t),t) ui* (hi (x*(t),t),t),t.

I

A-
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The proof of this Theorem by using variational techniques and

Lemma 3.1 is simple but lengthy. For the sake of completeness, we give

it in Appendix F.

We give now a different derivation of the results of Theorem 3.1

under weaker assumptions, which provides an interpretation for them and at

the same time an extension of the region of their validity. Let

Uk - Lu I u : [t 0 f]- Rk, u piecewise continuous) (3.23)

Consider the problem

tf 1

minimize J(Ui'u ..... U-m) g(x(tf)) +1 L(x,U,Vx h (x,t 1  x,t)mt)dt
t

0

subject to i f(x,u,Vxhl(x,t)ul,.. .,xh (xt)Tdt), x(to )X, t E[t ot f

UE, Ui E U, i ,...,m. (3.24)

Clearly, if Jl' J* are the infima of (3.17) and (3.24) respectively, it will be

J*<J 2 Also, if U u ,'. ),' _ - solve (3.24) and give rise to x(t),
1 -m

then a u= (u , ... ,u M)' EU with

u I1 (h I (x(t) ,t) ,t) xi( t

6 (t), ui i (x (,t), t) = V h ? t)Ou. (t)

um(hm(x(t),t),t) i =l,...,m (3.25)

results in J2 (u) = J and gives rise to the same x(t). However,

such u E U does exist. For example we set



69

u (h (x,t),t) al (t) h (x,t) + bi(t) (3.26)

where

ai(t) = . (t) (3.27)

bi(t) = ul(t) - a(t)h 1 (x(t),t) (3.28)

This u satisfies(3.2 5). Thus, problems (3.24) and (3.17) are actually equivalent

in the sense that for each given (xot they have the same optimal

trajectories and costs and their optimal controls are related by (3.25).

The conditions of Theorem 3.1 are now directly verified to be the

necessary conditions for problem (3.24), where one should use u and u, in
'i

place of u and u irespectively. More importantly, the conditions of Theorem~Y *-i* C

3.1 hold if one considers simply u EU, without assuming that u is in

i y
w.r. to x in a n.b.d. of ((hi(x*(t),t),t),t(:[to,tffl. This weakens the

strong differentiability property of u assumed in Theorem 3.1 . The
i

relative independence of u, u i was exploited in proving Theorem 3.1
Y

when the special form of the perturbation cp(y,t), y'"(t) (see proof of

Lemma 3.1), sufficed to conclude (3.20) and (3.21). This independence of u and

i
u i was taken a priori into consideration, when problem (3.24) was formulated.
y
Clearly, even if higher order partial derivatives of u w.r. to

. . . , -i£ i i l i i
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iappear in f and L, or if u,u i are restricted to take values within

y
certain closed sets, the equivalence of the corresponding problems (3.17)

and (3.24) holds again (with appropriate modifications of the definitions

of U, Ek' f and L). We formalize the discussion above in the following

theorem.

Theorem 3.2: Let u* EU be a solution to the problem

tf

minimize J(u) g(x(tf)) + L(x,u,ux,...,u ,t)dt (3.29)
t x x

0

subject to: i = f(x,u,u ,..., ,t), X(t x , tE[t ot

uEV, (ul (hi (x(t),t),t),..,um (hm (x(t)1t),u11 (hl (x(t),t),t) ... I

Y

u m(h (x(t),t),t))EV (3.30)
Y

where VC Rm+ nm is closed. Then there exists0-

P: [to't f -R n such that
0 fqi

m i- L = x+fxP +Ji l u TV h.i( + p (3.31)

1* 1m* m1*1

L(x*(t), uI*(hl(x*(t),t),t), .... I um*(hm(x*(t),t),t), u x(hi(x*(t),t),t),

,.. M (hm(x*(t),t),t),t) +

xx

+ f'(x*(t), u (hi(x*(t),t),t),..., um(hm(x*(t),t),t), Ulx(h (x*(t),t),t),

,.. UMx (h m(x*(t),t),t)" p(t)<
x (3.32)

_L(x*(t), qo'''''qo'V (X()'t)ql,.''''7xh m(x*(t)'t)qm't)

+f(x*(t),q .... ,q m , 7xhl (x*(t),t)ql,...,"xh m(x'(t),t)qm, t)

m , .. )EVo07 0q 0..q~l
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ag(x*(tf))
P(tf) = (3.33)

for tE[tof] . C

It is remarkable that the established equivalence of the problems

(3.17) and (3.24) refers to the optimal trajectories, costs and control values.

It does not refer to any other properties, such as sensitivity, for example.

It is thus possible, that different realizations of u i(hi(x,t),t) other

than (3.26) may enjoy sensitivity or other advantages. The following pro-

position provides information for tackling such problems.

Proposition 3.1.

(i) If u and v are elements of U, both satisfying (3.25), so does

Xu+(l-X)u, 'VXER.

(ii) Let m-1, h (x,t) = x1 and KlUIUI1 be scalarvalue functions of

t,tE[to, tf] . Then the function
x 1 (Xl- Xl (t))

u(x,t) -- e (t) + [-(t)-S l(t)U (t)]" [Xl-3Fl(t)]

satisfies u( (t),t) = ii(t), ux(7(t),t) = Ul(t)

(iii) Let x, u, u1 be as in (ii). Assume that the scalar valued

functions u(x,t), v(x,t) satisfy u(xc(t),t) = v( (t),t)

u(t:) and u x(R(t),t) = v x(-(t),t) =Then so do the

2uv u2 +
V2

functions , --uv 2 assuming that u and v are properly

behaved. 0

The proof of this proposition is a matter of straightforward verification.

The assumption in parts (ii) and (iii) for scalar valued quantities

actually induces no loss of conceptual generality, since it can be abandoned

at the expense of increased complexity of the corresponding expressions
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of course.

The nonuniqueness of the solution u to problem (3.17) is obvious

in the light of (3.25) and Proposition 3.2.Nonetheless, this nonuniqueness

is a nonuniqueness in the representation of u1 as a function of hi and t,

while ult, uiilt are the same for all these representations. The non-
y

uniqueness of ul t,u 't, if any, can be characterized in terms of the
y

possible nonuniqueness of the ai(t), bi(t) (see (3.26)), where one, w.l.o.g,

restricts ui to affine in h controls.

One very basic difference between problems (3.17) and (3.24) is the

following. It is clear that the principle of optimality holds for both of

these problems, in the sense that the last piece of each optimal trajectory

is optimal. The existence of a closed loop control law (-(x,t),uZ(x,t),...,

in(xt) which results in an optimal solution to problem (3.24) for every initial

point (x0,t0 ) in a subset of R
n+ l is guaranteed under certain assumptions, see

[24]. A corresponding statement does not hold for problem (3.17), i.e. in general I
there do not exist functions ui of hi(xt) and t such that u = (u ... um)I is

an optimal solution to problem (3.17) for every initial point (xo ,t) in a subset

n+lof Rn . This can be easily seen to hold by the following argument. Let

such u exist. Then,
,ulmml 1 m (m~xt,).

(ulI (hlI (x,t), t) ....,u m(h m(x,t) ,t)u I (hl1 (x't),t) .... ,u mm x' ))

y y

is a closed loop control law for problem (3.24). This implies that there must

exist a solution (u'uI'''''T) with _G= uG,...,u m ) of the partial differential

equation of Dynamic Programming associated with problem (3.24) which satisfies

.. .(xt) = u (h.(xt),t) and 17 h I(x t)Z.(xt) i I which
3x x '
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4
is not in general true. This difference between problems (3.17) and (3.24) empha-

sizes the fact that their equivalence holds in a restricted fashion, i.e. for each

initial point considered independently and not in a global fashion, like a

closed loop control law treats the initial points.

Two final remarks before entering the next section are

pertinent here. First, that the established equivalence of the problems

(3.17) and (3.24) reduces all questions of existence,uniqueness,controllability

and of sufficiency conditions for problem (3.17)to the corresponding ones

for (3.24). Any problem of the form (3.17) where terminal constraints and

control constraints are present can be solved and necessary and sufficient

conditions can be written down in as much as this can be done for the problem

(3.24) with the corresponding constraints considered in addition. Second,

Theorem 3.2 still holds if instead of the initial condition

x1 a, x$ x
X(to) = Xo it is given: xo(t0 ) x and x (t f) = x f , where x ( ,x )

In this case, (3.33) is modified to

g (x(tf)) 0h(x (t(3 ) )
p(f b (XCY) and p (to) b (3.34)(ti))= ((x))

where the more general cost functional

tf

J = g(x(tf))+ h(X(to))+. L(x,u,t)dt (3.35)
t
0

is considere1 (see [35]).

4 di
Imposing the condition -

= Vxhl.U i , where U (xlt),u i (xlt) are given in
FV(x, t)

terms of ax , where V(xlt) is the value function for the control problem

(3 .2 4 ) results in a zondition that V must satisfy in addition to being a solution

of the dynamic programming partial differential equation.This procedure can

be used to single out a class of control problems (3.17) where a closed loop

control law exists.
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3.4. Solution of the Leader Follower Game

In this section we analyze the LF Game of Section 3.2 by

using the results of Section 3.3. In particular, we work out a

i
Linear Quadratic LF Game, where the leader is paralized for u

X

as well.

Let us consider the LF Game of Section 3.2. In this case,

the hi's for the leader (u), are

h I((x,p),t) = 0nx x X,

and the h i's for the follower (v) are identically zero. Different h i s may

be used to model different information structures in terms of x(t), and t

available to the leader and follower at time t. Thus Theorem 3.2 is

applicable and can be used for writing down the leader's necessary

conditions. From the results of the previous section, we conclude that the

solution for the leaders u -if it exists -is not unique. It is interesting

to notice that (3.26) implies that the leader has nothing to lose if he commits

himself to an affine in x, time varying strategy. With such a commitment,

the leader does not deteriorate his cost, does not alter the optimal

trajectory, and also the follower's optimal cost is not affected. More

noteworthy is that the affine choice for the leader can be made even if

i
f, L, M are nonlinear and u, u are constrained to take values in givenx

closed sets. In addition, v may be constrained to take values in a given

closed set in which case (3.10.3) should be slh±tltuted bv an appropriate

inequality. In accordance with troe discussion in the previous section, we

have that in general there does not exist a strategy u (x,t) which is optimal

-vr initial point (Xot 0 in a subset of Rn + 1
0o
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Let X (Xl~X2) denote the adjoint variable for problem (3.14) with

Xl 2 corresponding to x and p respectively. Then, condition (3.32) results

in

[M (x,u,S(xPu,t),t)+f (xuS(x,p,u,t),t)pIX = 0 (3.36)

V tE [tot f ]

which will generally make the leader's problem singular (34]. This is to be

expected, because the leader exerts his influence through the time functions

resulting from u and u , which are actually quite independent, and u is notxx

penalized or subjected to any constraint in the initial formulation (?.3)-(3.5).

In other words , the leader is more powerful than what a first inspec-

tion of the original problem indicates. One way to restrict the leader's
i

strength or to avoid the singular problem could be the inclusion of u in L,x
I m

i.e., L = L(x,uu ... u, ,t), which would model a self disciplined leader,
x

or to impose a priori bounds on u , for example, 1lu1 5 K, V tE [totf]

which could be interpreted as a constitutional restriction on a real life

leader.
i

It could be suggested to the follower to penalize u in his
x

criterion while u is not penalized in the leader's criterion. This wouldX

i i
lead to the appearance of u in (3.14) (assuming u exists). Thus, in ad-

xx xx
i

dition to (3.36) a similar condition due to u appears which reinforces the

singular character of the problem. If the leader now restricts himself to

affine strategies in x, then uxi = 0 and the resulting optimum is as before.

Actually, the leader can restrict himself to a quadratic strategy in x

(without affecting his globar optimum cost and trajectory) having thus three
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i

influences on the system, namely u, ux, ux from which only u is penalized

in the leader's criterion. Therefore, the leader will do better. For the

follower it is not obvious if he will do better or not.

Let us work out a Linear Quadratic LF game. The leader
i

is penalized for u as well, by including it in L. We consider the dynamic
X

system

x = Ax+ B u + B2v, x(t o) =x o  t E ito,t f ] (3.37)

and the cost functionals

tf

Jl ( u
1

v ) =[ fXf+ 1 (x'Qlx+u'R, u + v Zu R )dt] (3.38)
t i=l
0

tf

J2 (uv) = [xfK 2fxf (x'Q2x+u'R2 u+ v'R2 2v)dt 1 (3.39)

where the matrices A, Bi, 01 , Rij, Ri are continuous functions of time and

Qi' R ij, R. > 0, R > 0 are symmetric. R22 > 0 is nonsingular V t E [tot f],

which guarantees (3.11).The follower's necessary conditions are (recall (3.10)).

-RlB~ p  (3.40)

= Ax + Blu - B2 'Bp (3.41)

p = -Q2x - UxR21-u A'p - uxBjP (3.42)

X(to) = x P(tf) = 
2 fxf. (3.43)

Therefore, the leader's problem is (recall (3'.9), (3.14))
5

5We assume that Assumption (A) holds. See also Appendix E.
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minimize J(u) = [XfKlfXf+ f (XQlx+ U'RlU+

(3.44)+ p, -I R i ,1 ' ml i'
+ 2RR-1 R 2B2 p +  u R.ui)dt]2 2212'22 x x

subject to:

x Ax - B2 2B2P + B1U (3.45)

P = -Q2x - A'p - uB'p - 2 u (3.46)

x(t) = x o , p(tf) K2 fxf. (3.47)

The necessary conditions for the leader in accordance with Theorem 3.2 are

(3.45), (3.46), (3.47) and
• I B{X - Iu

Rlu + Bl1 I - R21Ux'2  0 (3.48)

[R u l I.. R qm ] + ?,2(R21u+BIp)' 0 (3.49)
x mix 221

1

-I Q x  A'X1 + Q %2 (3.50)

B "BP + B2 + A 2 + BIU (3.51)2 22RU2222 2 2221 +A2 1 x 2 (.1

SI(tf) = Kif Xf  %2(t0 ) = 0. (3.52)

For simplification we assume further that

R YiI, Yi Y >  i = i, ... ,

(3.53)
R I, R22 =1

and (3.48), (3.49) are easily solved for u and u to yield
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u = + ! 2  R' R R [B ' I 2 2  ' (3 54)u =-[ -23 RR21] LBX 1 - R2 1 B{I
Y Yl2

u X - - p'B +u R21 ] (3.55)

which can be substituted into (3.45), (3.46), (3.50), (3.51) to yield a nonlinear

system of differential equations, with unknown x, p, %i, %2 and boundary condi-

tions (3.47) and (3.52). If y -* +-, then (3.54) and (3.55) yield u -* 0 and

u - B{X1 , and thus the solution tends to the open loop solution, i.e.,

u u(t) v = v(t), as the resulting form of (3.45), (3.46), (3.50), (3.51)

indicates for y * + ([27],[28]).

3.5. Relation to the Principle of Optimality

It has been shown in [29] through a counterexample that the Principle

of Optimality does not hold for LF games. To make this statement more

precise, let us assume that the LF problem of Section 3.2 has been solved

in [to, tfI and x is the optimal trajectory. While the process is at (x (T),r),

where t 0 < tf we stop and solve the same LF game on [t, tf]

with initial condition x (T) - x (f). Let x be the optimal trajectory for

the second problem. Then x does not have to coincide with the restriction of

x on [t, tf]. The explanation is the following. The leader is faced with the

control problem (3.14) which has boundary conditions x(t ) x and
6h (x (tf)) 0 0

p (tf) =  x given at to and tf. Let (x , p ) be the optimal

trajectory of this problem. If the leader is asked to solve the same control
6h (x (tf))problem on [, tfI with boundry conditions x (t) -x (t) and p (tf

there is no necessity for p (t) - p (t):
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Even more, if %I' X2 are the adjofnt variables of the leader's control problem

on (to , tf] and X X 2 are the adjoint variables of the leader's control

problem on [ttfJ, corresponding to x and p respectively, it will be
bg (x .t f) ag (x ^(tf)

XI (tf) - , X2 (t) 0, Xi (tf) =  (x f X2 (t) = 0.

If the FPinciple of Optimality were holding, it should be X2 (t) = X2 (t) 0,

which is not true. Actually, X2 (t) = 0, VtE [totf] is a necessary

condition for the Principle of Optimality to hold The condition

X2 (t) - 0, tE [to, t f] can be used for deriving more explicit conditions

in terms of the data of the problem for the Principle of Optimality to hold.

Let us consider the linear quadratic game of Section 3.4. As it

was shown in the previous paragraph, 2 (t) = 0 Yte [to, t ], is a necessary
o f

condition for the Principle of Optimality to hold. With X2 0, (3.51) yields

-B2 12 22B2P + R1B'X = 0

from which, by assuming rank B2 = m2, we obtain equivalently

-i11D + B'XI =022 22- 122B'p + B = 0

Also, (3.49) yields

i
u 0, i1 = 1., i. (3.56)

We conclude that under the assumption rank B2 
= 2) (3.45)-(3.52) simplify

to give

X Ax + BIu + B v (3,57)1 2

X1 -Q - P"X (3.58)

A-ql
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R ll 0, R12 I 0 (3.59)

X(t) = xo, I(tf) = Klfxf (3.60)

p -Q2x - Ap (3.61)

-B , (3.62)
V -R2 2B2p

P(tf) K2 fxf. (3.63)

(3.57)-(3.60) show that the leader's problem can be considered as a team problem

under the "constraint" (3.56), with optimal solution, say (u*,v*) and (3.61) -

(3.63) show that the same v* must be the follower's optimal reaction to
*t

the leader's choice u Actually (3.56) is not at all a constraint, since
i

with 0 0, (3.46) where u appears) is not really considered by the leader.

So, the leader operating under (3.45) and wanting to minimize (3.38) may as well
i. i ui

choose u = 0, since he is penalized for u , while u does not appear in (3.45).

The same analysis and conclusions carry over to the more general

game of Section 3.2 (see (3.1)-(3.5) and (3.11)),since the condicion X 0 on

[t, tf1 comes from the demand that the transversality conditions hold
i 

YtE [to, t and is not affected by the fact that in (3.4) u is nc penalized.
~) f x

Notice that if the leader's cost functional (3.4) is substituted by

t f mI 1
= fL(x,u,v,t) + i'i.ld

J1 (uv) g(x(tf)) + it+ uR u I dt

0 i1(3.64)

Ri > 0, i =

then (3.56) holds again.
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The idea behind the condition X 0 on [t, tf] is that the leader

is not really constrained by the follower's adjoint equation and therefore

the leader's problem, being independent of the follower's problem, becomes a

team control problem.

In conclusion, a necessary condition for the Principle of Optimality

to hold for the LF games of Sections 3.2 (and 3.4), is that the leader's

problem is actually a team control problem. But for a control problem with

fixed initial conditions, the Principle of Optimality does hold. We thus

have the "if and only if" statement: The Principle of Optimality holds for

the problems of Section 3.2 (and 3.4) (see (3.1)-(3.5), (3.11) and (3.37)-(3.39)

respectively) if and only if the leader's problem is a team control problem

for both the leader and follower.
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CHAPTER 4

SUFFICIENT CONDITIONS FOR LEADER-FOLLOWER AND NASH
STRATEGIES WITH M4EMORY

4.1. Introduction

In the present Chapter we consider a continuous time deterministic

differential game with a linear state equation and quadratic cost functionals.

We consider the case where the players have at each instant of time recall of

p'-evious values of the trajectory, i.e. they have memory. Both LF and Nash

equilibrium concepts are considered and sufficient conditions are developed

for a class of problems to have solutions af fine in the information. Particular

emphasis is placed on the LF case.

The structure of this Chapter is the following. In 4.2 we give an

example of anLIF game where the leader by using previous values of the state

forces the follower to such a reaction that the leader's final cost is the same

as it would have been if both leader and follower were striving to minimize

the leader's cost. The main steps in solving this example serve as an illustra-

tion of how a more general case should be analyzed. In 4.3 we derive sufficiency

conditions for optimality for a control problem of a special form (of interest

on it's own) which are used in the next sections. In 4.4 we apply the results

of 4.3 to a LF game where the leader has recall of the previous trajectory and

the game is such that the solution of the LF game (u*,v*) minimizes the leader's

cost over all admissible (u,v), i.e., the leader's problem is actually treated

as a team problem of both the leader and follower. In 4.5 we consider certain

special cases and generalizations of the LF game of 4.4. In 4.6 we apply the

results of 4.3 to a Nash game where the two players have perfect recall of the

whole previous trajectory. One Appendix to this Chapter is provided at the end

of the Thesis.
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4.2. Introductory Example

In this section we provide an example of an LF differential

game where the leader uses the previous values of the state in calculating

his control values. The game considered is such that the leader, by using

this type of strategy forces the follower to such a reaction that the

leader's optimal cost is the one he would achieve if both leader and follower

had as their common objective the minimization of the leader's cost; i.e.,

the leader's problem to minimize J is actually treated as a team problem

where the team is composed by both the leader and the follower. A similar idea

is used implicitely in [44]. The strategies found provide an LF equilibrium

pair, with the property above, for any xo . Also, the dependence of the

leader's control values on previous state values is not trivial in the sense

that the same result - team solution of the leader's problem - cannot be

achieved by strategies depending only on current state value's information.

We develop the example in such a way that the proof of the optimality of the

indicated strategies is clear. Actually we do not give only one example-but

provide a way of constructing a whole class of Stackelberg games with the

above properties.

Consider the following state equation and cost functionals

= 2x + u+ v , x(O) =x 0 , tE[O,1] (4.1)

Jl = 4x(l)2 + (6x 2 +u 2 +v 2)dt (4.2)

= 2x(l) 2 + ' (q x 2 +rv 2 )dt (4.3)

Now
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where x, u, v are scalar-valued. The solution of the problem

minimize J 1
U,v (4.4)

subject to (4.1)

is isU -2kx, V = -2kx (4.5)

2
where k solves -k 3+4k-4k , k(l)=2, and is given explicitly by

k(t) 15 +e 8 (t - l) (4.6)

10-2e
8 (t

- l)

We want to show that there exist q, r, Z V 2' so that

the problem

minimize J
v

subject to k 2x+tIx+ 2 z+v , (0)X 0  (4.7)

x , z(O) 0

has the solution

V* = X + z (4.8)

and that

I 1 (t)x*(t) +A 2 (t)z*(t) = -2k(t)x*(t) , tE(0,l] (4.9)

v t = l (t)x*(t ) +L2(t)z*(t) = -2k(t)x*(t), tE[0,l] (4.10)

) 0 tE[0,1] (4.11)

for any x0 where x* is the common optimal trajectory of the problems (4.7) and

and (4.4) since (4.9) and (4.10) will hold.



85

It is clear that if conditions (4.9) and (4.10) are satisfied, then

the pair (u=1 1 (t)x(t)+Z2 (t) I x(T)dr, v=-2k(t)x(t)) constitutes an
0

LF equilibrium pair for the LF differential game associated with

(4.1)- (4.3) and where U=[ulvalue of u at time t is given by u(xt.,t), where

xtEC([o,t],R), xt() =x(O) VOE[0,t], u(xt,t) is Frechet differentiable in x

and piecewise continuous in tE[0,1]}, V=vlv is a function of x(t) and t,

at time t, v(x,t) is continuous in xER and piecewise continuous in tE[0,l]1.

We set

cY(t) = 2 -4k(t) (4.12)

and thus the optimal trajectory for the problem(&l,4) is
t

SC0(T)d T  (4.13)
0x*(t) e xo

T(4.13)
t I a(a7) d c

z*(t) [e ]d0 X

The solution v* of (4.7) is

V* - (pl x +p 2 z) (4.14)

where

1 2
= 

2 ( 2 +11 )p + 2P2 + q - P,- p1  , P ( 1) =2

2 2 + (2 +AI)P 2 + P3 - 1 lp2 , 2 (1)= 0 (4.15)

1 2
P3 

= 22 2P2  r P 2 , 3 (i) = 0.

Substituting (4.13) and (4.14) in (4.9), (4.10) we obtain

P1 
= 2r k- p2 p

A, = -2k -2 p (4.16)
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where t o0 (T

(p(t) (f e dT)(e ). (4.17)
0

(Since =z/x, it is easy to see that =2-(2-4k)p.) Substituting pl, 11 from

(4.16) into (4.15) we obtain further

222rk - (p2 + p3 ) - q +4rk 2 + 6r -2ik = 0 (4.18)

-P 2 
= (2rk-P2 p) - (2-2k-I 2 p)P 2 + P 3 -r (2rk-p 2 Y)p 2  (4.19)

12 2

= r p2  (4.20)

2r(1)k(l) - p2 (1)((1) = 2 (4.21)

p2 (l) = 0 (4.22)

P3 (1) = 0. (4.23)

A

From (4 .19)and( 4 . 2 0),setting w p 2 +Pp 3 we obtain

7 = -2rkI2 - (2-4k)w, w(l) = 0. (4.24)

Solving (4.18) for p2+TP 3 and substituting in (4.24) we obtain finally the

following system equivalent to (4.18)-(4.23)

Cprk + A2 [rk +2 (1-2k)cprk +dL (cprk)] +

+ [ (2rk2 +3r-rk) +2(1-2k)(2rk 2 +6r-2ik)] +[ (1-2k)q-[ ] 0
(4.25)

2Y (W-Cpp (w-_pp ) (4.26)-P3 2 3 r 3

22
w = 2.%2 rk- q + 4rk2 + 6r- 2 k (4.27)

P2 w cPp3  (4.28)

2 (1) = (-ll +4i(1) +q(1))p(1) - 1 (4.29)

P3 (1) = 0 (4.30)

r(l) = . (4.31)
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We can choose now r, q, 12' Al as to satisfy (4.25)-(4.31) and (4.16). We choose

r~t) to be a twice differentiable function of tE[O,l1 with r(t)>O, r(1)- and
an

q(t) to be a differentiable function of t. Obviously q and r can be chosen

so that the linear differential equation for A2 (4.25) with initial condition

(4.29) has the solution Z2(t) * 0. For example let r -- =,q constant # 11.

Notice that the differential equation (4.25) for Z2 can be solved explicitly

for '2 as soon as r and q are specified since Cp and k are known. Nonetheless

since p(0) =0, the point t =0 is a singular point of this differential

equation. The singularity was sort of expected to appear since as it has been

shown in Chapter 3, the leader's problem is singular with respect to the

(u(X(t),t)
partial derivative X ) of his control and arguments similar to

those in Chapter 3 can be used to show that this holds even for the case where

u is allowed to be of the more general form u(xtt). Notice also that the

only essential restriction on the follower's cost, in order for the leader

to achieve his team solution (allowing even 1 2-O) is that r(l)= .

If the leader were allowed to use a strategy u(x,t) which is

perhaps nonlinear in the current state x(t), but he were not permitted to

use previous values of the state, then it should again be true that

u(x*(t),t) =-2k(t)x*(t) for every x o , i.e.

tr t
a(T)d a (,r)dr

u(e x ,t) = -2k(t)e x Vx E R
0

from which we obtain that u is linear in x. Therefore, we concluce that for

the given example, if the leader wishes to achieve his team solution (for

any xo) when he applies his stratecv and cannot do that wit) a

linear strategy in x(t), he cannot do it with a nonlinear in x(t) strategy

either. Therefore, use of memory is his only way to achieve his team solution.
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In the example presented here the two crucial steps were the

identifications (4.9), (4.10) and the use of the fact that the conditions (4.14),

(4.15) are sufficient to characterize completely the optimal reaction of the
t

follower to the leader's strategy u--).l(t)x(t) +2 2 (t)-' x(,r)d . Therefore,
0

in order to generalize the procedure presented to cases where more general

types of strategies are used by the leader, one should provide sufficient

conditions for the problem faced by the follower, in addition to imposing

identifications similar to (4.9) and (4.10). In the next section we prove

sufficiency conditions for a special type of control problem, which we will

use later in guaranteeing the optimality of the follower's reaction, when

the leader uses strategies represented as continuous linear functionals

over the whole previous trajectory.

4.3. A Control Problem With State-Control Constraints.

Consider the problem (P):

tf

minimize J -2 [x(tf)Fx(tf) + j (x' (t)Q(t)x(t) + u' (t)R(t)u(t))dt]

tO (4.32)

subject to: k(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x0  (4.33)

tf tf

.' [d s8 (t,s)]x(s) + I (d s (t,s)]u(s)= q(t) (434)
t t0

u E L0,m

where the matrices A, B, Q = Q' : 0, R = R' a 0, are piecewise continuous

functions of time, x (t) ER 
n , u(t) ER m , and the interval [t0 tf] the matrix
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F = F' 0 rand q E LIk are fixed. The solution x(t) of (4.33) is assumed

to be absolutely continuous, so that (4.33) holds almost everywhere with respect

to the Lebesgue measure in [t0,tfl. The integrals in (4.34) should be

interpreted as Lebesgue-Stieltjes integrals. The matrix valued function

(t,e), 1:[t 0 ,tfI X R Rkx n is measurable in (t,8), normalized so that

(0 ,for 0 21 t f

1(t,e) (4.35)
IT,(t,tO), for e r t0

T(t,G) is continuous from the left in e on (t ,t f) T(t,e) has bounded

variation in 6 on [tOvtf] for each t, and there is a cE such that

tf
f[d S(t,s)]T(s)lI L c(t)II 9 11C (4.36)

to

for all t E [t0,tfI and for all y E Cn. Exactly the same assumptions hold

for 11: [t0'tfI X R - Rkxm with c1 replacing c in (4.36) .'f and Ti are given

for the problem (P). The dimension k is arbitrary but fixed.

Problem (P) is of interest to us since we will use the results

of this section in the next ones where we will consider games with delayed

information structure. Nonetheless it is of interest on it's own. It is

worthy to point out that (P) is of a quite general form, since for example,

the problem (P')

tf
If

minimize [x (tf)Fx(tf)+I (y'(t)Qy(t)+uj(t)R(t)ul(t))dtj
t

0

tf t f
subject to:x(t) =f [dfl (t,s)lx(s) + [ds2 (ts)]U(s)

t t
0 0
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tf

f 3
y (t) = 7 [dsI3(ts)]x(s) (4-37)

t
0

U l(t) =[d fl4 (ts)]1u(S)
tf
0

x(to) 0 x

can be brought to the form (P) by introducing

tf

u2 (t) = ( ds 7(ts) ] x(s)
t
0

t

u3 (t) = [ds 2 (t,s)]x(s) (4.38)t

0

u4 (t) = y(t).

Using (4.37), (4.38), (P') can be written equivalently

tfminimize [ x'(tf) Fx (tf ) +1t (u4Qu4 + U'RUl)dt]

(4.39)

subject to (t) u2 (t) +u 3(t)

tf t tf 2 tf

u = 1 [d1 ] , u2 = Jf [dlx, u3  = [dl]x, u4 =J' [dJ 3 ]x (4.40)
tt t t

0 0 0 0

where the role of x and u in(4.33), (4.34) is played now by x and

(U,ulu 2,U3,u4 ) respectively. Clearly (4.40) is of the form (4.34).

In the following theorem we give sufficiency conditions for optimality

for the problem (P). The proof is carried out by reformulating (P) as a

constrained optimization problem in a Banach space and is given in

Appendix G.
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Theorem 4.1:Consider the problem(P)and assume that there exist functions

P : [t02tf] -R n , EL,, x*: [t0, tf]R
n, u*EL,i where 1 is of bounded

variation on [t 0 ,tf] and continuous from the right on (t0,tf), and x* is

absolutely continuous, which satisfy (4.33), (4.34) and

tf tf

- j (R(r)u* (,r) + B'(o) (T)r + ' ll(Tt)X(,)d =r 0 (4.41)
t to

tf tf

P(t) - I (Q(r)x*(r) + A' (')4(.))dr + I T ( T,t) X(T)d = Fx(tf) (4.42)
t to

Then u*, x* solve ().

It is easy to see that in case T, 01i 0, then (4.41) and (4.42)

reduce to

R(t)u*(t) + B'(t)P(t)=O

- (t)- Q(t)x(t)+A'(t) (t), P(t f )-x(t f)

as it should be expected.

Theorem 4.1 can be easily extended to the case where cross terms u'Lx

exist in the integrand of (4.32) and to cases where more general convex cost

I functionals (4.32) are considered.

i

4.4. A Leader Follower Game with Memory

Consider the dynamic system

k(t) - Ax(t) + BlU(t) + B 27(t), X(to) Xo, tE[to'tf]  (4.43)

and the cost functionals
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tf
J, = X'(t) F (t+1 (Y.' (t)QlX (t) +U' (t)RllU(t) +V'(t) Rl2V(t))dt]2l x(f)1 F~f) to01 (4.44)

J = - [v )F Xtf)+1f (x, (t)Q x (t) +-U' (t)R21 (t) + -(t) 'R22V(t))dt]

t (4.45)

where the matrices A, Bi Qi=Qi'O, R. =RZ 0 are piecewise continuous functions
i 1J i

of time over [toltf] and RII, R22, R12 are nonsingular YtE[totf]. The
f ill 2' 0' f

matrices F=F'>0 and the time interval [t0,t f] are fixed.

Consider the Stackelberg game associated with (4.43)-(4.45). The

admissible strategies of the leader are of the form

t
u(xt,t) =J [dsi(t,s)]x(s) (4.46)

t
0

where TI is as in (4.35)-(4.36), so that u(.,t) is a continuous linear functional
mI

on C([t 0 ,t],R ) for each tE[tot fI . The admissible strategies of the

follower are of the form v(x,t), xERn, tER, where v is continuously

differentiable in x and piecewise continuous in t. All the matrices in

(4.43)-(4.45) are considered to be of appropriate dimensions. By xt, u, v

we mean
nx t : [tot] -R , xt (0) = x(9), Ve,tE[to tf] (4.47)

u(t) = u(xtt), V(t) = v(x(t),t) (4.48)

where x(t) is the trajectory of (4.43) for given u and v. For each choice of

u and v the behavior of the dynamic system (4.43) and the calues of Ji,J2 are

unambiguously defined, assuming that the solution of (4.43) exists over

[t,tf] . Actually when the strategy (4.46) is considered one might w.l.o.g.

restrict T to be 0 for slt, tE[totf] . The costs of the leader (Jl) and

of the follower (J2) are functions of u and v. We denote by U and V the
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sets of the admissible strategies for the leader and follower respectively.

With these explanations the LF game associated with (4.43)-(4.45) is clearly

defined.

In the sequel we single out a subclass of LF games with the nice

property that the leader achieves the best possible outcome for himself; i.e.,

the leader's and follower's strategies constitute together an optimal control

law for the control problem with cost functional Jl(u,v) subject to the

I constraints of the state equation. The procedure followed is the

following: First solve the leader's problem as a control problem with

controls u,v. Let (u*(t),v*(t)),x*(t) be the optimum control pair and

trajectory, where u*(t),v*(t) are piecewise continuous functions of time.

Consider any function uEU such that u(x*,t)= u(t) YtE [t tf]. Second,

solve the following inverse control problem: with u =u in the follower's

cost, and the state equation, minimize J2 (ii,v) and seek conditions

so that v* solves this problem and the resulting optimal

trajectory for this problem is again x*(t). So, if these conditions are

assumed to hold apriori, then the pair (u,V*) constitutes a Stackelberg

pair. One may derive conditions, by solving the inverse control problem,

where u depends only on x(t), or on almost any subset of (x(T);t o < <t

for each t. One may also single out a whole class of LF problems

*where the inverse control problem does not have v* as its solution, whatever
tf I

is the u. For example if J2 =1 f(t) i(t)dt, then v* will be optimum if and
to

only if 7*(t) SO. It is trivial to exhibit now a class of J1 's and A, BI,

B2, so that *(t) A0.

Consider the control problem
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minimizeJ1(4 
49

subject to ~,~piecewise continuous functions of t

and (4.43)

Then (4.49) has the solution

U()= -R-1 B1Kx(t),V*(t) =-R- 12 Kxt (4.50)

where K is the continuous solution of

KAAK Q-[RB +B2R22],Kt)F tE[ t 0 tf] (4.51)

which is assumed to exist. Let (t,t ) be the transition matrix of the
0

resulting closed loop system in (4.43), i.e.

~(t,t)-l-
0 (A-B R 1 B1K-B2R 1 B K)I(t,t), (t0 ,t0 ) =I, tE[t0 ,tfl]. (4.52)

Then the optimal trajectory x* and control values of -uv for (4.49) are

t given by

0 0 '0 o

ti*(t) = - 1Bl~~t~o(.4

*(t) = -R 12 B2K(t,t )xo. (4.55)

Let If be as in (4.35), (4.36) with n(t,e) 0 C for 6>t and satisfy

the identity

j d Ld5'l(t,s)] '(s,t) -R -1(Bt)t, tto' l f456It0
If flsatisfies (4.56), then

t t

I* (t) =r[d s (t,s)] (s, t0 )x = [ds (t, ,S)IX*(S) (4.57)

t. 0 t 0
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(4.56) characterizes all the q's which result in the same u*(t) (4.54), i.e.

provides a class of different representations of u*(t) as a linear continuous

functional of x*=(x*(e);t <<t3. This class of I's is not empty, since
t 0-

for example

0 for O>t, tE(tolt f

T(t,e) = -R (t)B (t)K(t), for 9<t, tE(to, t f ] and (4.58)

for 9<_t, t = t

satisfies (4.56). For fixed t, the set of all 7(t,.) which satisfy(4.56) is

the hyperplane Ht=[:' I( t,)ENBV([to,t],R ) , *)perpendicular to

§(.,t)l shifted by T(t,.) from the origin in the dual space of C([to,t],Rnxn).

A useful class of I's which satisfy (4.56) is given by

'(t,s) = s)+Ho(t,s ) + E A.(t,s)d(s-pW)0 i=l 3.
mix n

where H ° is absolutely continuous in s for each t, Ai 
:[t, tf]X R-R

continuous, pi:[to,tf]- R continuous, d(s)=0 for s<0 and d(s)=1 for

s >0, and

t BH (t,s) po' 0 (s,t)ds+zAi(t,Pi(t))M(Pi(t),t) 0 on [to, f] (4.60)
a s 3.0=

o
0

Another 1 which satisfies (4.56) is

0, for @ 2! t/2, tE(to tf]

0, for G > to,  t = t
s

-R t)---Ktl t~a- 2 (4.61)
0 0

for R<-t/2, tE(t0 ,tf]

-Rll(to)BI(to)K(to ) , for e < to, t t o .
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Notice that

t-t
0

-*(t) I [d sI(t,s)lx*(s) (4.62)
t
0

i.e. only the first half of the trajectory up to time t is used in

calculating u*(t).

Theorem 4.2: Assume that there exists a function * as in (4.35),(4.36) with

7,*(t,9) =0 for e >t and an nxn matrix function P :[tolt -R nx n which satisfy

t1
[ds1*(t,s)](s,t) =-Rl (t)Bl(t)K(t), tE[to'tf] (4.63)

t
0

R22-I(t)B2 (t)P(t) = R- 1 (t)B 2 (t)K(t), to'if] (4.64)

tf

P(t) +r [-A' (,r)P(,)-Q (,r) +7*' (I,t)B (r)e(\.)
t

+,*' (r,t)R 21 (T)R 11 (,r) B, ( K (,}@ ( ,t)d r F F2- (tftt), E t 1(4.65)

Then the pair

t
u*(xt't) [dJ*(ts)]x(s) (4.66)

t

v*(x(t),t) -R 12 B '(t)K(t)x(t) (4.67)

constitutes an equilibrium pair for the LF game associated with (4.43)-(4.45)

for any x with strategy spaces U and V.o

Proof: We set

T(t) = P(t) (t,to)x o .  (4.68)

Then the vector X(t) (-l,X(t)')' and the control

a -R22y s (4.69)

satisfy the sufficiency conditions of Theorem 4.1 for the problem
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minimize J2 (u*(xt,t),v)
(4.70)

subject to vEV and (4.43)

where u is kept fixed equal to u*. That the u* in (4.66) is the leader's best

reaction to v* in (4.47) is an immediate consequence of the fact that the pair

(4.66), (4.67) solves the problem (4.49). a

The case where the leader's strategy is allowed to be of the form

t
f [dfs (ts)]y(ts)
t

0

where y(t,x)=C(t,x)x(s), -L C(t,s)=0, a.e. to5s t<tf with 7 (t,s).C(t,s) as

d
in (4.35)-(4.36)can also be considered. The property T C(t,s)=0, a.e.

t ts
to0S<_t tf allows one to write I [d s(t,s)]y(t,s) f d s[(t,s)C(t,s)]x(s)

t to

and thus to use directly Theorem 4.1. We only mention that in this case

the leader has restricted memory and *C should play the role of T* in

(4.63)-(4.67) in the corresponding sufficiency conditions.

For given J*, (4.65) is an integral equation for P(t). Since it

has a Volterra kernel, if in addition it holds that A'()-I7*'(r,t)'BI(r)

is bounded by some M for any t 0 t, t !ttf, then the Neumann series

for (4.65) is always uniformly convergent and furnishes the unique solution

of (4.65), see [48]. If J*(t,s) is of the form

k Hi, Pxm1  nxp
f*(t,s) J (s), (t) R , H(s) E R (4.71)

then (4.65) can be written as

tf

P(t) + t-A' (1r) +ZHi (t)Hi()B' (r)}P(v) (.,t)dT =F 2  (tf2t) +
t
t f

-I( B{( K( ) ( t~d (4.72)+1 (Q2 (T)-I*(T,t)R 21 (T)Rll(TB'TKTJ(~~T(-2

t

which is an integral equation for P with a kernel of finite rank and thus

its solution is of the form
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k iP (t) ( -- t) + ZH(t)E i to (4.73)
0 0to i=l to

where o'-l''''"-k are constant matrices which can be found as solutions of

algebraic linear equations. In this case, checking (4.64) is easy as soon

as the-- is in (4.73) are found.

If (B KB2 )-l exists over [totf], (it suffices that rank B2 =m 2 and

FI > 0), then (4.64) is equivalent to

P(t) = M(t) +Y(t), M(t) = KB2 (B KB2 ) 1R 2R-lBK (4.74)

B (t)Y(t) - 0 on [to,tf] (4.75)

and (4.65) can be transformed into an integral equation for Y.

Theorem4.2 suggests that for an LF game with given

A, Bi, QV Rij' Fi, one may try to find 7* and P which satisfy (4.63)-(4.65)

and then consider (4.66), (4.67) as a solution. Also, by solving (4.65)

for Q2 ' one can exhibit a whole class of LF games with solution

(4.66), (4.67), where , , K, A, B1 , B2 , Fl, RII, R1 2 , R2 2

are chosen as to satisfy (4.51), (4.52), (4.63), (4.64), F2  P(tf) and R21

is chosen arbitrarily.

4.5. Special Cases and Generalizations

We first apply the results of Theorem 4.2 to two special cases.

Case i: Let , as in (4.58). Then u* in (4.66) assumes the form

u*(xt,t) = -RllB IK x (t ) .

-1 1BKt)

(4.63) is satisfied and (4.65) simplifies to
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- P<t) P(A- B l ; + (A -B;K) 'P +Q

-1 -1 , - 1PB2R2B p =F (4.76)
+KB1RIRI2RBK - , P(tf)111122

If (B'KB2)1 exists and is differentiable on [to't f] and B KR2RI2B2K are

If 2) 2 essadof 2' are1

differentiable on [t0 tfI and of constant rank, then all the R2 2, Q2 ' F2 '

P with R2 2 >0, P>O which satisfy (4.64) and (4.76) are given by (see [43])

R22 - VrV', (4.77)

P = M+Y (4.78)

-- P(A-B R-1B Y ) - (A- R1 Bl{,)P (4.79)

KR-l1 R-1 B'K +PR- 1BP(.0-KB 1R 1 1R12 R  1 +P 2 22

F2 = Q2 (t f) (4.81)

where
B2KB2 = VAV, A - Jordan diagonal form (4.82)

22 rA=r'>o (4.83)

B'Y 0, Y=Y' O. (4.84)

If r and Y do not satisfy F > 0, Y 21 0 then one cannot conclude that

R22 > 0 and P k 0 resnectively. Y and RI2 have to be chosen properly

differentiable so that P exists and is piecewise continuous. The

above construction does not guarantee Q2 20, F2 >O.

Case ii: Let *-1+72 where

1 ~2 wher
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-(t,)B' (t)Ll (t), for s<t tE(t o f.

'l (,s) -R 1l(t )Bi(to)L1 (to), for s<t °

for s >t, tE (to, t and
0 o f

for s>t , t = t o

(s-t)L2 (t), for s<t, tE[t 0 ,tf]

712 (t,s) (4.85)

0 for s>_t

where L1,L 2 are real valued matrices. Then u* in (4.66) assumes the form

u*(xtt) = - -I (4.86)
t

and (4.63), (4.64), (4.65) simplify to
t

-R1 1 (t)Bl(t)Ll(t) +L 2 (t)F (s,t)ds = -R 11 (t)Bl(t)K(t) (4.87)
t

0

R- (t)B (t)P(t) -i (t)B (t)K(t) (4.88)R22 -12

t f

t

+(t -T)L (T)B (T)P (T)-L1(T) B1 (T)RII (T)R 21( T)RII ( T)B'(T)K (T) +

+(t-T) L (r)R21()R 1(Q)B(T)K ( ,r)B((,t)dr F2 ) (4.89)2~t +1 1 t')

The cases i and ii were special cases of the case considered in

the previous section. We will consider now cases where the leader uses the

previous strategy values as well. In the LF game considered in Sec-

tion 4.4 , the value of the leader's strategy at time t was allowed to depend

on the previous trajectory xt = (x(); to! <t. More generally one

may allow that the values U(t) of the admissible strategies of u of the leader

at timte t depend not only on the previous values of x but also on those

of v. Assuming this dependence to be linear we have
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t tEd S71(t, s)I x(s) +1 ds (t, s))V(s)
t to 0

or more generally

q(t) = [dS71 (t,s)]x(s) +J [ds 2 (ts)]u(s) +1 [d T 3(ts)W(s) (4.90)
t t to 0 0

qEL lkfixed.4 (The i,12, 3 in (4.90) are as in (4.35), (4.36).) So, foragiven

choice 1 1,72 ,13 by the leader, the follower is faced with the problem
t f

minimize L [x(tf)F 2x(tf) +, (x'(t)Q2x(t)+U'(t)R21(t)+V(t)R 2 2 (t))dt]
t

subject to k(t) = Ax(t) + BlU(t) + B2v(t), X(t) =x (4.91)

(4.90) and U,V piecewise continuous functions of time.

Theorem 4.1 can be now used to derive sufficeint conditions for problem (4.91).

A simple version of (4.90) is

t t
U(t) =7 [ds l(ts)]x(s) +J [d s,(t,s)]z(s) + L(t)v(t)

t tto to (4.92)
where

i(t) = A1 (t)x(t) +A 2 (t)z(t) +Bl(t)T(t) +B 2 (t) (t), Z(t) z0 4

(4.93)

and the matrices L, Ai' B1 are real valued piecewise continuous functions of

time and z(t)ER , A arbitrary. For the linear system (4.43) with quadratic

costs (4.49),(4.45), we augment (4.93) to (4.43), set x= (x'z') andthe

system is

4Notice thac in (4.90), u(t) depends on its own previous values. If
u(t) were allowed to be any function of x(e),V(e), t 0@est, then the
dependence of U(t) on it's previous values would not buy the leader anything
additional. But if U(t) is restricted to depend on x(), 7(e), t .t in
a special form (like in (4.90), seealso (4.92) -(4.96)), then ailong dependence
of (t) on it's own previous values will benefit the leader.
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[ A 0 B 1  + [ B ] 2 7 , )x (t) -- x(t) u(t)+ x(t)
-I A2J gL~ B2JZ-l -2 120- (4.94)

- Ax + 1U + 2v,

with costs J1 ,J2 as in (4.44), (4.45) and with the strategy of the leader

restricted to be of the form

tu(xtst) [d7 [ds (t, s)lx(s) + L(t)-v(t) . (4.95)

t
0

The results of Section 4 are directly applicable to (4.94)-(4.95) and the

problem is to find I, A., Bi, L, P so that (4.63)-(4.65) are satisfied wherein

(4.63)-(4.65)one should use ABl,(B2+B1L ) in place of A,BI,B 2 . As far as

it concerns zo, it may be set arbitrarily equal to a constant or to a

function of x preferably linear. The choice of z might affect not only

the feasibility of (4.63)-(4.65) but the follower's optimum cost value as

well. A simpler case of (4.95) is

U(t) = Lix(t) + T2 z(t) + Lv (t) (4.96)

in which case the solution of the LF game is easy since the

leader's controls are actually AI' A2  BI, B2, '1 T2 L, i.e. the leader

plays open loop. Nonetheless the leader's problem will be nonlinear since

his control multiplies the state (x,z)'.

4.6. A Nash Game with Memory

Consider the Nash game associated with (4.43)-(4.45) where at each

instant of time t, both players have access to all the previous values of

the state. The admissible strategies for both players are of the form

i .. .. .. . . 11.. . . ,il ~ iil ill" I I I . . .. . . . il .. " .. .. ii U
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t
u(xt~t) f[dsnl(t,s)]x(s) +bl(t) (4.97)

t
0

t
v(x ,t) [ f Id(ts)]x(s) +b(t). (4.98)

t o

1f and 72 are as in (4.35)-(4.36), bi(t) are piecewise continuous functions of

time with appropriate dimensions. By x., u, v, we mean

u(t)=u(x ,t), v(t)-v(xtt) (4.99)

*1 t t* : [Ro,t]- Rn, xt(G), veErto,t], YtE~to~tfi

In the next Proposition we give sufficient conditions for a pair

of the form (4.97), (4.98) to constitute a Nash equilibrium pair. The first part

of the Proposition refers to a particular initial point x , while the

second part gives conditions similar to the coupled Riccati differential

equations, see C 1] , which result in solutions in feedback form which are

solutions for any initial point x 0

Proposition 4 .1: (i) Assume that there exist 71*, "* as in (4.35)-(4.36),b*, b*

piecewise continuous and 1' P2 . [toltf]-_n of bounded variation which

satisfy:

tf tf

i(t) -I [A' (,)Pi(T) +Qi(.r)x(r)ldr+J 1 ' ( ,t)[B (t)i ( T)
t

+Rij ()j ( '(P ()]dT = Fix(tf) ij, ij1,2 (4.100)

* t -
b*=-R- I (t)Bi (t)pi(t),i=l,2 (.I1

b*(t) +f [dsJi(ts)]x(s) = ii (4.101)
t

0

= A(t)x(t) -B R-1 p -1 (4.102)

x(t 0 x 0 .
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Then the strategies

t
u*(xt t) -- +dst(t,s))x(s) (4.103)

t
[

tv*(xt~t ) =[d [ds*(t,s)]x(s ) +b*(t) (4.104)

t

0

constitute an equilibrium pair for the Nash game associated with (4.43)-(4.45)

with admissible strategies (4.97), (4.98) and with x(to) =x 0 -

(ii) Assume that there exist 7i,2 as in (4.35)-(4.36) and matrix functions

P1,P2 : [to'tf] --RnXR
n of bounded variation which satisfy

t

P (t)-Uf(A'(T)Pi (T)-+Qi ('1r)+IJ (7, t) [ B (r)Pi(T)+Rij (r)R.iI(T)St (Op (T) ,t)d
t

=F i I(ift) i,j=l,2, i~j (4.105)

(t,t 0 )-1-
-It~ o (t) 1 t).()P (t)jt(t,t0) '(4-106)

at = BA(t BI(t)Rll (t)Bi(t)Pl(t)-B 2(t)R2 2(t)B (t)p (

I(tO,tO)=I

d *(t,s)] (s,t)= -Rii(t)B(t)Pi(t),i=l,2. (4.107)
0 s 5I ii 2 ~

Then the strategies

u*(xtt) =J, [ds' (t'slx(s) (4.108)
t 0

t

v*(xt,t) M [ds1*(t,s)]x(s) (4.109)

0

constitute an equilibrium pair for the Nash game associated with (4.43)-

(4.45) with admissible strategies (4.97), (4.98) and for any x ER

-No
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Proof: (i) If the second player plays (4.98) then (4.100) 'ith i-l,j=2 and

U~)=-l1(t)B ' (t)661 (t) (4.11t0)(t = - 1 1  2

constitute sufficient conditions for optimality, by Theorem4.1, of U for
-l

the control problem faced by the first player. (In(4.100) the term B

t
is substituted by -1 [d sl 2Ix in these sufficient conditions.) Similar

to
reasoning applies for the control problem faced by the second player when

the first player plays (4.103).

(ii) We will first seek solutions l, 2 of (4.100) which will work for any xo .

Let

Pi(t) = Pi(t) (t'to)X °  (4.111)

where 4 as in (4.106). Usiing (4. 109) in (4. 100) and (4. 101) we obtain (4. 105) and

(4.107) where we considered b. i0. It is clear now that if (4.105) and (4.107)

hold, the i's as in (4.107) satisfy (4.100)-(4.102).

The case where the players use strategies of the form

t
u(Ylt,t ) -- S [ds1l(t,s)]Yl(t,s) +bl(t)

t
0 (4.112)

t
v(y2t't ) " t [d2(t's)]Y2(t's) +2(t)

0

where for i-1,2:

yi(ts) = Ci(t,s)x(s), t o <S<t

dd Ci(ts) - 0 a.e. t o<s<t<tf

s

n.
Yi(t,s) ER
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and i(t,s) rLi(t,s)Ci(t,s) are as in (4.35)-(4.36) can also be considered.

The strategies (4.112) correspond to the case where the. i-th player's informa-

tion at time t is C (ts)x(s); t <s<t?. We only mention that in this

case 7*C i should play the role of * in the conditions of Proposition 4.1

The results of Proposition 4 .1 (see also problem (P')) can be used

to study the Nash game associated with (4.43) - (4.45) where the players use

previous values of their opponents strategy values. For example

U~) = [d s7ll(t,s)]x(s) + jr [d s 712 (t, s)]17(s)
t t

= [d s 2 1 (ts)]x(s) +1 [d s 2 2 (t,s)]G(s).
t t

0 0

Strategies of the form (4.92), (4.95), (4.96) can be considered for theNashgame

and the augmentation (4.93)-(4.94) may also be employed in this case. The

procedure for studying sufficiency conditions for Nash games with such

7 strategies should be obvious by now and we will not take it up here.

,..-
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CHAPTER 5

ON SOME STOCHASTIC STATIC AND DYNAMIC NASH GAMES

5.1. Introduction

In this chapter we deal with stochastic Nash games. We start

in Section 5.2 by considering a static stochastic Nash game, where each

player has a quadratic cost and his information is a linear function of a

Gaussian random variable. Certain known results are considered first and

some new ones are provided concerning the existence and uniqueness of the

solution. In Section 5.3 we study solutions of the game of Section 5.2 which

are affine in the information and provide a method for finding them. In

Section 5.4 we generalize some of the results of the previous sections to

the case where each player's control vector is subdivided into smaller

control vectors, each one of which has to use different information. The

information available to the subvectors of each control vector is nested.

In Section 5.5 we consider a discrete time stochastic Nash game with linear

stochastic state equation and quadratic ccsts where the players have noise

corrupted state measurements. Special cases of this game were solved in

[17] and [63]. The case where both players have perfect state measurements,

i.e. Ci,k = I and vi, k  0 Vi,k (see (5.51) - (5.55)) was studied in [17] and it

was shown that if the noise wk in the state equation is nondegenerate, then

the game admits a unique solution affine in the information under inver-

tibility conditions for certain matrices. It was also shown in [17]

that if wk is degenerate, then the game will have in general an

infinite number of nonlinear solutions. The case where at each stage k

the players share their previous state measurements and their information
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differ only in the k-th state measurement was studied in [631 where it was

shown that the game will admit a unique solution affine in the information

under invertibility conditions for certain matrices. In the more general

case where the assumptions of [171, [631 concerning the information of the

players do not hold the solutions of the game becomes extremely difficult.

In Section 5.5 we single out some new classes of problems which can be

relatively easily solved by using the results of the previous sections. In

the last Section 5.6 we translate some of the results of Section 5.5 to a

continuous time stochastic Nash game with a linear stochastic state equation

and quadratic costs where the players have noise corrupted state measurements.

Examples demonstrating certain properties of the solutions are also

given.

5.2. A Stochastic Static Nash Game

In this section we consider a static stochastic Nash game. After

a brief review of some results already available in the literature we

examine certain properties of this game and present some new results.

Let x be a Gaussian random variable over a probability space

(Q,j,P), x: 1- Rn with mean R and covariance Z, and y,,y 2 two random

variables defined by

Y= Hix, i = 1,2 (5.1)

where Hi is an n i x n real constant matrix. Consider the Nash game with two

players, 1 and 2, where player i chooses a Borel measurable function
ni R mi

ui:R - and his cost is

+_ . . L
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Ji(ulu 2 ) = 1 ( uiY)ui(Y ) + u ( y ) Qix+u i (y i )R.u.(y.)+ui(y )hi

i#j, i,j =1,2. (5.2)

Qi' Ri' hi are real constant matrices of appropriate dimensions. yi is

referred to as the information available to player i. We also want UlU 2

to be chosen so that ul(yl),u 2(y2) have finite second moments. Thus our

problem is to find (Ul,u 2 ) which satisfies

j(u1u J1(Ulsu), V admissible uI (5.3)

J (uu *) < J(u*,u), V admissible u2.21' 2 2 12 2

A straightforward application of Radner's theorem [51],[52] results in the

following theorem (Theorem 1 of [52]).

Theorem 5.1: (u ,u*) is a Nash equilibrium pair for the game defined above

if and only if

u1 (y1 ) = -E[Q 1x+Rlu2 (y2)+hlyl] (5.4)

u2(Y2) = -E[Q 2x+R 2u1 (yl)+h 2 1y 2]. (5.5)

Substituting u2 from (5.5) into (5.4) we obtain

u1 (yI) -Q1E[xlyl]-h 1 + R1h2 + R1Q2 E[E[xly 2 ]1Y 1 1

+ R1R2 EE[u 1 (yl) jY2 ]lYl]. (5.6)

Therefore the investigation of solutions of this Nash game is equivalent to

the investigation of solutions u1 of (5.6). It can be easily shown that

since the operator Pim E['lyiI is a projection operator in an appropriately

defined Banach space L ([52],[531), it has norm <1, and thus the operator

PMR R E2E[Iy 2IfyI has norm IIPIJ JIIRR211. Thus if IIPIIfIIRiR 2(<, the

expansion (I-P)- =I+P+P 2 +... holds ([541, p. 231) and thus (5.6) has

a unique solution given by
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u1 (y1 ) (I+P+P2 + ... )(-Q1P 1x+R 1Q2PP 2x-h l +R lh 2 ) . (5.7)

Since y1 and y2 are given by (5.1) and x is Gaussian we conclude that the

converging infinite sum (5.7) is a sum of Gaussian random variables each

one of which is affine in y1 and thus we conclude that u1 )(y) will be of

the form

u1 (y) L 1y + d1  (5.8)

where Ll,d 1 are some constant real matrices. If (5.8) holds then we see

from (5.5) that u2 (y2) will be of the same form, i.e.

u2 (Y2) L2Y2 + d2. (5.9)

The above discussion is formalized in the following theorem of [52].

Theorem 5.2: If 11R R 21< 1 or 11R R 11< 1, then the Nash game has a unique
1 2 2 1

solution which is of the form (5.8),(5.9).

Theorem 5.2 guarantees existence and uniqueness of a Nash solution

and that the optimal strategies will be affine in the information. It is

crucial to notice that the condition 1R R 211< 1 has nothing to do with the

HH 2 matrices which nonetheless constitute a quite substantial part of the

data of the problem. For example if H1,H2 are such that P P = 0, i.e. PP2

project into orthogonal subspaces of L then P=0 and the solution u1 of (5.6)

is given by the first two terms of (5.6) and is of the form (5.8),

whatever R1R2 might be. More generally one can see that the solution of

(5.6) is unique if and only if the operator I-R R2P1P2 is invertible.

Theorem 5.3: Assume that P1P2 or P2 P is a projection. Then if det(I-R1 R2)00,

the Nash game admits a unique solution pair (ul,U2) with ut affine in y
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Proof: Let P1 P2 =P be a projection. Then if (I-R1R2PIP 2 )= =0 - (I-R1R2P),P
= 0.

Let P = P1 
+ P 2 9 ' 1  P P 2 =0. Thus i1+i2 =R 1R2 'I P2

= 0 - (I-R1R 21P 
= 0.

Since det(l-RiR 2 ) 0 0 2 i = 0. Thus P = 0 and I-R R 2P P2 is invertible. By

Theorems 1 and 2, p. 228 of ref. [54], we conclude that (I-RR 2PIP 2) is a

linear continuous operator. Thus u is affine in Yl and consequently u* is
2

affine in y2 "

Corollary 5.1: If H 12 
C1H1 (or H1

= C2H2 ) for some matrix C1 (or C2 ), then

P1P2=P 2P P2' (P2 P 1 =P
IP =P ) "

Proof: Let i, 2 be the minimal a-fields in Q with respect to which yl,y 2

are respectively measurable. If H2 
= C H

I 13 S i = E[E['2 12 ]

E[E[.j 2 ] 1a] =E[.Ij 2] by Theorem 6.9, p. 260 of [55], i.e. ele2= P2 Pl= P 2

and P2 is a projection.

Notice that if R 1R 2<1 (or OR R 1< 1), the expansion (5.7) holds while it

does not have to hold under the assumptions of Theorem 5.3.

Let us now assume that for some nonzero vector e it holds

R1R2e= e and that H1 ,H2 are such that they provide a piece of common

information to both players. Let us also assume without loss of generality,

that x1 , the first component of x is available to both players. Consider

any nonzero Borel measurable real valued function T(x). Then

P e.E(xl)=P 2 e.q(x) =e.y(x) and, e.i(x)=RR 2 e.T(x I ) and e.(xl)#0. Thus,

if (5.6) has a solution and det(I-R1 R2) = 0 this solution will not be unique.

We thus conclude that the condition det(I-R1 R2) = 0 is necessary for the

uniqueness of the solution of the Nash Game, if the two players share a

common nontrivial part of their information.

We conclude this section with an example which demonstrates that

the Nash game may have no solution at all or an infinite number of solutions.
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Example 5.1: Let x= (xl,x 2 )', ylY 2 ,ulu 2 take values in R
2  R=0,

h, =h 2=0h1 2 0

cov(x) = (5.10)
_0 Cy

and CVx 2

Yl =  ]x Y2 = ]. (5.11)
0 0 -0 l-

Then (5.6) assumes the form

(R R)u 1 =-Q 1+ RQ) [1 (5.12)

Let [0 1] 1/21

i2 1-3 0

Ql Y]' Q2 [1 26~ J1

where 1= 2B-5a . Then

[1-a 
7-y]

-I RR2 =[ ]
1 :3- 11-6

and (5.12) results in

u2(x1) -[ '1 (5.13)

where P(x I) is any Borel measurable function of x which results in u (x

having finite covariance. (If we had 10 23-5a then (5.12) would have no

solution.) From (5.5) we obtain
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2 -+(5.14)
L 3a- X + 7x 22 1 2

and using (5.2), (5.13), and (5.14) we find

J= - 1 (a-1) - E [p 2 (X)] (5.15)
1 2 1 2lxi 1

6a22+1 2 (.6
, 6a2-2l i E [2P (x) +2x (x)]. (5.16)J2 =  4 °1 -8 1

Notice that by choosing p (x )nx and letting n- +- J*- Notice

0ni 1 1

also that the solution of the game is exactly the same even if in the cost

functional of player 1, terms of the form u u2, u~x, x'x were included.

1
Actually by adding to the cost functi-nal of player 1 the terms - eu u

2 2'
iOx'x, where 6>O we see that Jb becomes a quadratic of the form

[Ul,U2,x'] R ei 0

2Q 1 2[l 0 eij
which is positive semidefinite for a sufficiently large e (see [561).
Addition of such terms to J will not alter the solution, but will alter

i, * and thus will eliminate the possibility J*- Finally notice that

I-R1R2 is singular and HI = C2H 2 and thus the possibility of nonunique

nonlinear strategies was expected by the discussion following Corollary 5.1.

5.3. Affine Solutions of the Stochastic Static Nash Game

In the previous section we stated conditions under which the

Nash game posed there will have a unique solution with the controls of the

players being affine in their information. The conditions det(I-RIR2) # 0
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and H2= CIH1 demand some special attention. Let us assume that H = CI HI

If it happens that det(I-R1 R2 ) 0, then by perturbing very little the

arguments of R and R we can guarantee that for the perturbed pair

(RI,R 2 ), det(I-R 1 R2) # 0 will hold. This is important because in a real life

problem the values of RI,R 2 are approximately known. Thus almost all

such Nash games admit a unique solution which is affine in the information.

On the other hand if det(I-RiR2 ) = 0 but it is very close to zero, it might

happen that out of the possibly infinite solutions one can result in making

J or J2 arbitrarily small, (recall Example 5.1), i.e. if det(I-R1R2 )ZO

the game might exhibit an unstable behavior. Therefore, in order to

guarantee uniqueness of an affine solution in a realistic framework, one

should impose a condition of the form det(-R 1R2 ) >E>O, where : is some

positive constant which depends on the measurement error of the entries of

R and R The condition H 2 = CI H can be satisfied if a negligible but

nonzero signaling is allowed between the players (see discussions in [57],

[58], [59]) and this in conjunction with det(I-R1 R2) # 0 will guarantee

existence of a unique solution affine in the information.

Let us now restrict a priori our attention to admissible pairs

(Ulu 2) of the form (5.8),(5.9). It is clear that if player I plays (5.8)

then player 2 will use a strategy of the form (5.9) and vice versa (see [51]).

In this case we have the following theorem.

Theorem 5.4: Assume that HI,H 2 have full rank n1 and n2 respectively, and

E O, so that H1 EH1 , H2 EH2 are invertible. Then, a pair (Ulu 2 ) of the form

(LlYl+dl, L 2 Y2 +d 2 ) is a solution of the Nash game posed in Section 5.2,

if and only if the following matrix equations are satisfied.

AiI61 I
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+R L H (517tI = -(Q
+ RiL2 2)EHj(HiEHj) -  (5.17)

L = -(Q +R L H )H'(H EH2')- (5.18)
2 2 2 11 2 22

d= -(QI + R1L2H2)(I- ZHI(H 1 HI)-IHI)F- (R1d2 
+ h1 ) (5.19)

d = -(Q2 + R2LIHI)(1- EH2(H2EH2)-H2)3 - (R2d1 + h 2)" (5.20)

Proof: The proof is a matter of substitution of ui =Liyi +d i in (5.4),(5.5)

and identification of the appropriate matrices. U

Substitution of L2 from (5.18) in (5.17) results in

L 1  R R2LIHIZH2(H EH 
H 2EH I(HIZH =--QIZH'(H EH')

- I

1 1 21 1 H( 2 H2) 2l 1l1' '<1 1 '

QZH1 (H2EH')- H2EHI(HIEHj) - . (5.21)

Since H1 has full rank, by introducing M1 = L1 H we can write (5.21)

equivalently as

MI RRM ZH(H2H'2)-IH ZHI(HIZHI) IHI = -QIHI(H IH) 
1H1

1 11 2-22 ,2 1(HIH)-H 1  1

+ R1Q2EH2(H 2 H2) HEH1(H1Hj) 11 (5.22)

Notice that uI  
L ly

l + d I = MIx+d Substitution of d from (5.20) in

(5.19) results in

d -R IR dI = -(QI+R
IL2H2)(I- EH (HIEH j)- I H I )1  -h

1 121 1 1 2 2 11 H 1

+ Q2  RLiH ( 2-E2H2 H2 )-iH2 )x + Rlh2. (5.23)

Notice that as soon as M1 is found from (5.22), we obtain LI = M (H IHH)

L2 is determined from (5.18) and with LI,L 2 given, the solution of (5.23)

for d determines d2 from (5.20). Consequently the study of solutions

affine in the information is reduced to the study of solutions of (5.22) ana

(5.23). Obviously, if det(I-R1 R2 ) #0 (5.23) results in a unique solution

for d in terms of MI . Therefore we will focus on (5.22).
1 1
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Lemma 5.1: If for any pair (X,.) of eigenvalues of R1R 2 and

, -lH2 ' -1l
ZH2(HH2) HZH'(HH') H respectively, 1 Xi, then (5.22) has a unique

22 211 1 1

solution in Mi.

Proof: The proof is an application of Theorem I of [601.

Notice that interchange of the indices 1 and 2 in the hypothesis of Lemma 5.1

does not result in any benefit since for any matrices A,B, which commute

AB and BA have the same eigenvalues.

Proposition 5.1: If det(l-RiR2 )  0 and Hi = C2H 2 or H2
= CIH I . then (5.17)-

(5.20) has a unique solution in Li,L 2 ,dl,d 2.

Proof: 1=C H the product EHjH ZH)1 H H(HH) =

Pof If1 2 222 211 1

EH'(H~H 2 H (H jHi)-l EC2(HZHi) Hi=
222 2 2 1 221 1 1 1 ,

i.e. it is a projection and thus it has eigenvalues 0 or 1. Since

det(-RiR) # 0 we conclude that all eigenvalues of R1R 2 are different than I

and thus the hypothesis of Lemma 5.1 holds. Thus L1 ,L2 can be found

uniquely. Since det(I-R 1R2) # 0 (5.23) can be solved uniquely for d1 .

Clearly the conclusion of Proposition 5.1 was expected in view of

Theorem 5.3 and Corollary 5.1. The above results provide conditions for exis-

tence of a unique solution affine in the information. If these conditions do

not hold, we might have no affine solutions at all or an infinite number of

affine solutions. Notice that in our results the matrices HI,H 2 play a

certain role while in Theorem 5.2 they do not.

From equation (5.22) it is obvious that the study of solutions

affine in the information is intimately related with the study of the matrix

equation

Y-AYB D. (5.24)

.1.
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In the sequel we will deal in more detail with this equation. Let

A = diag(A, ....A ), K= diag(B ,...,B ) be the Jordan forms of A and B
a l pb lq

-1 -1 -lR C -lDRadturespectively, with A= TA aT , B=RA b R . We set X= T YC Radtu

(5.24) is equivalent to

X- AaXA = C. (5.25)

We partition X and G in the form X= (X i.), C=(Ci.) =1,...,P, J=l,...,q,

so that (5.25) is equivalent to the system (5.26) of the p-q independent

matrix equations,

Xj -A.iX.jB. j Cij i=l1,...,P, 1l,...,q.- (5.26)

We have
A. =XI + H., B. =.±I + E.

where HE. are of the form

o 1 0.........0

o 0 1 0 ... 0

o ........... 0 1

Lo.............. 0

*with dimensions m iXmi, n xn respectively. It holds H. =0 E 0.

Case 1: 1= A Pi~ (5.26) can be written (we drop the indices for convenience)

X (X C+ AXE+ ijHX+ HXEJ. (5.27)

Multiplying (5.27) by H,E we obtain

XE tCE+ AXE +pHXE+HX (5.28)
1 22

HX lX [HC+ XHXE+ iH 2X +H 2XEI (5.29)

HXE 11Al[HCE+ XRXE2 pjH 2XE+ H 2XE 2]- (5.30)
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We substitute HXE from (5.30) into (5.28) and (5.29) and then substitute

XE, HX, HXE from (5.28)-(5.30) into (5.27). We obtain

2 2 2X = OLIC + OL2CE + a3HC + a4HCE + a5XE2 + cc6HXE2 + a7H2X

1 2 3 4 5 6 7
2 2 2 (.1+ a8 H XE + a9 H XE (5.31)

where al. ... a19 are functions of X.i and i. The importance of (5.31) is
2 H2

that in the terms in the right hand side X is multiplied by E
2 or H

Repeating the procedure but starting with (5.31) instead of (5.27), after 0

steps we obtain an expression of X in terms of Hk CE and H XE T,

If o"min(mj,n.) then the terms H XE are zero and thus after e steps we

have obtained the unique solution of (5.26). The existence of a unique

solution could be foreseen by Theorem 1 of [60], since 1#X.i..
1J

Case 2: 1 i *. In this case A.i is nonsingular and (5.26) can be written as

A. X.-X..B =A.~ C.. (5.32)
i 1ij XjBj i1j

(5.32) has a solution if and only if the matrices

A-l -lC .

0 B. 'i 0 B)

are similar, [61]. If similarity holds then (5.32) has at least one

solution. Since the homogeneous equation

Xj- AiXijB j -0 (5.33)

has 1= Xi j, it will have an infinite number of solutions and so will (5.32).

Methods for solution of (5.32) are known and we will not take up this issue

here.
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5.4. Generalizations

In this section we will prove generalizations of Theorems 5.2 and

5.3. Consider the Nash game where player 1 chooses (uI ... ,U player 2

chooses (vI .... ,VN), their respective costs are

N N I N , 1 Nx i__l iiXi=i 1.1+i,j 1lijiv 2 i,j=l 1V +- E u.r..u.] (5.34)

i~j

N , N , N ,_ 1 N
J 2  E[ 1  vv.+ Z v.Qx+ v.Ru.+ v! (5.35)

x-2 l i=l I i i,j=1 1 ij j 2 ij=l 1ijvj
i#j

where x is a Gaussian random variable and x,uiPv i takes values in finite

dimensional Euclidean spaces. ui is to be chosen as a Borel measurable

function of

Z. fi {Yl'''.Y. Yi f= H.x + Z L u.(Z ) (5.36)
Sj<j ij i i

and v. is to be chosen as a Borel measurable function of1

Zi {i' } .. = H x + Z L vj(Z.). (5.37)
1. j<i ij j J

In addition, ui,vi must have finite second moments. Notice that since the

information structure of each player is nested, see [62], we can actually

disregard the E L u , Z Li v. terms in (5.36),(5.37). The matrices
aJ<i ii i' j<i i

Qi,QiRiRij, r r T = i, Hi i  Lij,Lij, are real, constant, of

appropriate dimensions.

Theorem 5.5: A pair ((u*,..., constitutes a solution of the

Nash game associated with (5.34)-(5.37) if

* . -E[xui QE1jix+JRiv j + ri i u. zi] (5.38)

V = -E[Qix + u + E .v. (5.39)
: Th p i ri ji ijji

Proof: The proof is in spirit the same to the one of Theorem 1 in [52].
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If we set E['[Zi] Pi E['12i] i and take into account that Efu 1Z] = ui,

Evi J . vi , if i< j, we conclude that (5.38) and (5.39) can be written as

I rIP 1  F3P ... INPI RIP I R2PI ... RNPI Eu I
I r121I 13 P1 i Ni1 111PI 121 P I Ni'1 I

rT I r P r P R P R P R P
21 23P2 2NP2 212 22P2 2NP2

SNI F N2 ... N,N-I I IPN ....... RNPN UN

RIP............... RP I rP ..... . P v

r I rl P r
21 23P2.. 2NP2

p I v
X11N..NNPN NI :N2 vN

QIP

Q2P2

QN P N x (5.40)

SQNP N

or in

(I-L)u Tx. (5.41)

Since all the projections Pi,P. have norm <1, one can readily conclude that

if the matrices r ij,Rij,Rij are chosen sufficiently small, then the
ij' i

-2
operator L has norm < 1 and thus (I-L) = I+ L+ L + " Thus u can be

expressed as a convergent infinite sum of Gaussian random variables affine

in x and thus u is affine in x. We thus have proved the following theorem.
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Theorem 5.6: If the norms of Fij,' r,RijR.j are sufficiently small, then

the solution of the Nash game (5.34)-(5.37) exists, is unique, and each

ui,v i is affine in its information.

In the last part of this section we will show how Theorem 5.3 and

Corollary 5.1 can be generalized for the problem (5.34)-(5.37). In order

to illustrate the procedure, let us assume that N= 2. Let P1 
= E [' IZ I]i

P2 =E['Z 2], PI =E
['I1 I

], T2 =E[
'122 ]. Let us also assume that for some

matrices CI,C 2 it holds HI = CIH1, H = C 2H1 (recall assumptions of Corollary

5.1). Also let L.. =0, L.. =0 without loss of generality. Then

P1Pl =P1PI=P' P 1P2 = P
2
P
1P=P2 9 P2p2  P2P2  P2 (see Theorem 6.5.10, p. 260

in [55]). (5.38) and (5.39) assume the forms

uI = -QIP 1x- rl2P1 U2 - R11 P1v1 - R1 2P1v2  (5.42)

u2 = -Q2P2
x - 211 - R21P2V- R 22P 2 v2 (5.43)

v -QPx- 1 Pv -R P .u - Pu (5.44)
vI = -QPx - IPV2 - RPUl - RPU

v2 = -Q2P2 x - r21v - R21P2u - R22P2 u2 (5.45)

Since P U Ul, Pu 2 u2 = UiPlUl P U U, P UfPiu

1 1  P22 2  1 1 1 1 1 2

P2UlfP 2 P1Uu= P2u 2 P2=ui P2u2  2 = u2, and since F1P2 =P1 , (5.44) and

(5.45) become

v = (I-r2 r) l(-Q 1-r2Q)Plx + (I- 12 21)-(-Rl +1l2R21)u 1

+ (I-r 1221)-l-R12 + 1 2R2 2)u2  (5.46)

u -Q 2P2x-R 2 1 u -R2 2u2  - 2 1  fI )-I(-Q

21I-12211-(-R + -12R21)u1

21 1221)-l- r1 2 R2 2 )u2 (5.47)
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where we assume that det(I-F 1 2 l21) #0. Substituting vl,v 2 from (5.46),

(5.47) into (5.42),(5.43) we obtain a system of the form

u1 = AP x + A2 P1 U2 + A13u (5.48)

uu2 = B1P2x + B2u 2 + B3u (5.49)

where Ai,B i are matrices calculated after the substitution. If det(I-B2) #0,

we can solve (5.49) for u2, substitute in (5.48) and obtain

u1  AP1x + BPu 1  (5.50)

where A,B are again matrices calculated after the substitution. If

det(I-B) #0, then the operator I-B 1 is invertible and (5.50) has a unique

solution in Ul, linear in y1 " Therefore u2,v1,v2 can be found uniquely by

substituting u1 in (5.49) and ul,u 2 in (5.46),(5.47). We have thus shown

that if certain matrices are invertible, then the game will have a unique

solution, linear in the information under the crucial hypothesis that Z2 is

a linear transformation of Z1. The generalization of this procedure to the

case here N>2 is obvious. We can thus state the following theorem.

Theorem 5.7: If ZN is a linear transformation of Z or ZN is a linear

transformation of Z1, then if certain matrices are invertible, the game

(5.34)-(5.37) has a unique solution linear in the information.

5.5. A Discrete-Time Stochastic Linear Quadratic Nash Game

In this section we consider a linear quadratic discrete time,

stochastic, Nash game, where the players have noise corrupted measurements

of the state. The aim of this section is to point out several difficulties

and provide solutions or conditions for existence of solutions for some

special cases.

L-4
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Consider the dynamic system whose state xk evolves in accordance

with the equation

= Ax k + B, + B 2,ku2, k + wk' k=0,l,...,N (5.51)Xk+l ~~ ~ lk 2k2k k

where Ul,k, u2,k are chosen by two players who play Nash and whose respective

costs are J1,J2,

N
SE[x+1Q1,N+lxN+l k'OX( Ql,kx Ul,kulk+ u2,kRlkU2 k) (5.52)

NJ2 E[ II2NI ~ I2, u R2, u~ ~ (5.53)

where QR R > 0.u is to be chosen as a Borel measur-
l,k Qik i,k i,k i,k

able function of Zk, where

zi = {Y i Oi' (5.54)
Zk  ,,"'''Yi,k }

Yi,k = C i,kxk + vik , i= 1,2. (5.55)
m m

kUl,kU2,k take values in e
, R I, R 2 respectively, wk, vi,k, and x0 are

independent Gaussian random vectors, the expectations in (5.43),(5.44) are

with respect to all random variables and all the matrices have appropriate

dimensions.

Some special cases of this game have been treated

successfully, [17], [63], but in its general form, is quite

difficult to solve. Only one class of admissible Nash strategies can be

relatively easily investigated and this is the class of strategies affine

in the information. If player 1 uses an affine function oi his information

k at each stage k, i.e. Ul,k - Ml,k Zk 
+ dl,k then player 2 is faced with a

classical LQG problem which he can easily solve and his optimal reaction

can be restricted to be of the form u2,k =M l ,kzk +d 2 ,k without any

deterioration to his cost J The converse also holds. Thus we end up with
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a system of matrix equations with unknowns M i,k' di,k' i=1,2, k=0,...,N.

This system might have one, many, or no solution at all. The following

example demonstrates that there might exist no solution in the affine class

of strategies.

Example 5.2: Consider the one stage game

x =Axo  BUI + B2u 2

Jl = E[xiQIxl+ ujul+ u2RIu2 ]

J2 = E[xiQ2xl + uu 2 + u{R2ul]

where x0 = (Xlx 2)' has zero mean and covariance equal to the unit matrix,

2
and x,ul,u 2 take values in R . u1 and u2 have to be chosen as functions of

Yl= C1x0 and Y2
= C2x0 respectively. Substituting x, with its equal in

JiJ2 we obtain a static problem with

I+BiQIB 1
= E~u 2 u I +uBQIAx0 

+ ulBIQB 2u 21 (5.56)

I+B2QB 2

J2 = Eu + 2 Q 2 u2 + uB2Q2Ax0 + u B Q2Blu]. (5.57)

The solution (ul,U 2) is given by

u, = -(I+BjQIBI)- 1BjQIAE[x0 1Yl] - (I+BIQIBI ) BIQIB 2E[u 2 ly] (5.58)

-I - (I+B'QB Q12 IB B2)-IB;2BIE[U lY ]  (559)

u2  -(I+BQ 2 B2 ) B2Q 2 AE[x 0 1Y2] -. (5.59)

Substitution of u 2 from (5.59) into (5.58) we obtain

u, . -(I+BjQIBI) 1BIQlAE(x0IY I ]

+ (I+BIQBI) B IQB2(I+B2Q2B2) B2Q2AE[E[x0IY2]lY I ]

+ (I+B'Q 1 Bl)-IB'Q1 2 (I+B P2 2B 2)-B'Q2 2BE[E[Ul Y2]lYl]. (5.60)

Let us now choose
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Q1 [1 0 ' Q2 = [ 01 BI = [ '1 B 2 = [2 1

0 0i 0_-2 0 0

A= fL , CI = C2 [ 0[a 1 0 0

Then (5.60) assumes the form

[: 0][. 2 xl]0 1 0

which is impossible to solve for u 1 if C#Et.

Since the information of each player is affected by the control

laws of the other, one would be tempted to consider a subclass of problems

where this is not the case. Let us assume that

C B =0i,l j,0

C1,2 [Bj,I:ABj, O ] = 0

Cr[B :A2Bj ,:A2AIBj 0 ] = 0i,3 J,2. 2 j121j

Ci,kBj,k-lA -iBj k- 2
'... k - I 

2
" ' ' AI Bj , ] = 0 (5.61)

1,N[j,N-lI _ j,N-2 . ..  •. A1j O 0

i#j, i,j = 1,2.

Equation (5.61) means that the controllability subspace of player j is

orthogonal to the observability subspace of the Ci,k matrices of player i.

If (5.61) holds, then substitution of '+i in terms of xo,Ulo,...,ulk,

u2, 0 ... ,2,k' for k=0,...,N (by using recursively (5.51)), in the cost

functionals JiJ2 will result in a Nash game of the type (5.34)-(5.37).

The L matrices in (5.30) are given by products and sums of the C ,

ApB (0<p<J) matrices and the H matrices by products of the
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CI,p,A p , 04p<j matrices. Similarly for the ij H. matrices. Of course

the V i,k wk noises can be incorporated together with x0 in a random vector

which will play the role of x in (5.34)-(5.37). Therefore Theorem 5.6 can

be used to derive conditions which guarantee existence and uniqueness of a

Nash pair, affine in the information for the game (5.51)-(5.55) under the

hypothesis that (5.61) holds. Nonetheless, since for the Example 5.2

the condition (5.61) holds trivially, we conclude that (5.61) alone does not

in general suffice to guarantee existence of a Nash equilibrium pair.

Although (5.61) is a quite restrictive assumption (since for

example if C = I, k=0,...,N then player's 2 controllability subspace is

zero!) it did not really make our problem much easier. An inspection of the

static problem of Section 5.2 shows that if R or R2 (see (5.2)) is zero

then the static game (5.1)-(5.2) does have a unique solution which is affine

in the information. Similarly for the game (5.34)-(5.37) if the R.. 's or

the R..'s are zero. The translation of these conditions to problem (5.5)-

(5.55), assuming that (5.61) holds is that

:*.Ak...AB ,0 ] = 0, i=l, j=2, k=0,1,...,N (5.62)

holds. Then the problem of player 1 is totally independent of u2 ,k, i.e.

it is like setting R.. = 0 in (5.38). The meaning of (5.62) is that the

observable, through Ql,k' parts of the controllable subspaces of players 1

and 2 are orthogonal in a "stagewise" sense. If (5.61) and (5.62) hold then

player I is eventually faced with solving a system of equations like (5.38)

but with R ij= 0. This system can be solved uniquely and give a control for

player u1 linear in the information under invertibility conditions of certain
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matrices. (The reason that makes these invertibility assumptions necessary

is that the matrices Akk arising in the cross terms UlAkUlk,

O<k#ZN might make the control problem nonconvex in the (ul1 0,u 1,l .... ,N)

variable.) Consequently player 2's problem can now be solved, since it

becomes a classical LQG problem. For solving player 2's LQG problem no new

invertibility assumptions need to be made. Of course if one reverses the

roles of i=l, j=2 in (5.62), similar conclusions hold with the roles of

players 1 and 2 reversed.

Other cases where the game (5.51)-(5.55) can be solved and give

solutions linear in the information can be found by imposing condition (5.61)

and additional conditions which guarantee that the assumptions of Theorems

5.6 and 5.7 hold. We will not carry out these procedures here because of

the complicated character of the conditions involved.

5.6. Continuous Time Analogues

In this section we will deal with some continuous time analogues

of some cases considered for the discrete dynamic stochastic Nash game.

Consider the system

dx(t) = [A(t)x(t)+B 1 (t)u1 (t)+B 2 (t)u2 (t)]dt + G(t)dw(t) (5.63)

and the cost functionals
tf

J= E[f [x'(t)Q 1(t)x(t) +ui(t)ul(t)+u (t)Rl(t)u 2 (t)]dt] (5.64)
t

0

f
= E[f [x'(t)Q 2(t)x(t)+u (t)u2 (t) +uj(t)R 2 (t)Ul(t)]dt]. (5.65)

0

ui is chosen by player i as a measurable function of Yitv {(s); t 0s 't 0,

where



128

dyi(t) = C.(t)x(t)dt + R.dv., i 1,2 (5.66)

and u1 ,U2 are such that the solution of (5.63) exists and is unique over

[to t f. x(t ) = x° is a Gaussian random vector with given mean and covariance

and dw,dvl,dv 2 are standard Wiener processes. x ,dw,dvl,dv2 are

independent. The initial conditions for yl,y 2 are zero. x(t),ui(t),yi(t)
m. Rq.

n 1 1take values in R ,R ,R respectively and the matrices A,Bi,C i, Qi =Q' O,
11 i

R. = R> O, G, R. = R', (R.R.>O) are piecewise continuous functions of time
1 I 1 1 i

with appropriate dimensions.

The case in the discrete problem of Section 5.5 where each player

uses an affine function of his information, corresponds here to the case

where each player uses
t

ui(t) = [d Sni(t,s)]yi(s) + bi(t) (5.67)

0

where d sni(t,s) are deterministic Lebesque-Stieltjes measures and b.(t)

deterministic functions. If player 1 plays u1 as in (5.67), then under

appropriate conditions for player 2's problem a separation principle holds

and he will use u2 of the form (5.67), see [64 ]. Notice that (5.67) is a

compact form of writing the solution of an infinite dimensional filtering

problem. The need of infinite dimensional filtering for linear quadratic

continuous Nash games was first pointed out in [65]. The study of possible

nonlinear solutions to the game of this section is far more difficult than

in the discrete time case.

Let us try now to translate condition (5.61) to the continuous

time problem. Let 0(t,t ) be the transition matrix which corresponds to
0

A(t).

Li
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Lemma 5.2: If
0 t -t tf i#j, (5.68)

Cl1(t)(D(t,T)B2 (T) E 0 t o0- tf(.8

for (i,j) = (1,2) then the information of player I is independent of

the control law of player 2.

Proof: From (5.63) and (5.66) using (5.68) we obtain

t t s

yl (t) f C 1(s)((st )x if (s)(s)B(T)u(Y, T
t t t

o 0 0

t s t
+ f [f C1 (S)((s,T)dw(T)]ds +f RI(s)dvl(s) (5.69)

t t t
o o 0

and the conclusion follows.

Obviously (5.68) is the analogue of (5.61) for i=l,j=2.

Let us now find'the analogue of (5.62). The way we derived (5.62)

was by imposing the condition that there are no cross terms u Au
l,k 2,Z.

0<k, k<N (A: some matrix) in Jl. Therefore here we demand that

t t
(f D(t,T)BI(T)uI(T)dT)'QI(t)(f D(t,T)B2 (T)u2 (T)dT) = 0 (5.70)

t t
0 0

for every t and every ulU 2. (5.70) can be written equivalently

tt
f f uj(T)Bj(T) D'(tT)Ql(t)4(ta)B2( )u2 (c)d~do = 0
t t

0 0

and thus we conclude that (5.70) is equivalent to

BI(T)0 (t,T)Ql(t)0(t,a)B 2(c) = 0' to'<G' r ~ t  tE[tot f ]  (5.71)

(5.71) is clearly the continuous time analogue of (5.62). We can now state

the following theorem.

Theorem 5.8: Assume that (5.68) holds with (i,j) = (1,2) and (i,j) = (2,1)

and that (5.71) holds. Then for the Nash game (5.63)-(5.66) player 1 can
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find his control by solving a control problem with state y1 (t) obeying

(5.69) and a quadratic cost depending only on u1 and y1 ,

Clearly the quadratic cost mentioned in Theorem 5.8 will be of

a more general form than the familiar one, and the control problem of player 1

will be of the category considered in [64]. The results of [64] can be

used for solving the control problem of player 1 under the assumptions of

Theorem 5.8. The invertibility type conditions for solvability of this

problem in the discrete time case (see discussion after (62)) have to be

made here too. As soon as this control problem is solved player 2 will

be faced with a linear quadratic problem of the form treated in [64]. Thus

we conclude that the assumptions of Theorem 5.8 in conjunction with the

results of [641, can lead with relative ease to the solution of the problem.

We will close this section with a particularly simple case for

which the Nash game can be solved without using the results of [64] on the

infinite dimensional stochastic regulator problem. Let us assume that

C2 (t)D(tt 0)B (t) E 0

Il(t)D(t,to)B2(t) 1 0 tE[totf] (5.72)

112
1l(t) = Cl1( t)Q 1 (t), Ql (to 0 I

U2

Let us also assume that Q1 (t) is continuously differentiable and invertible

on [toptf]. Let

V12

z(t) - Q1 (t)x(t). (5.73)

From (5.63) and (5.72),(5.73) we obtain

1/2 t 1/2 t V

z(t) = QI (t)(t'to)x +f QU (t)?D(t,')B ()u (r)dT+f Q1 (t)4(t,T)G(T)dT.
t t

0 0 (5.74)

From (5.66) and (5.72) we obtain
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dyl(t) = Cl(t)x(t)dt + Rl(t)dvl(t) = CI(t)Q1
2 (t)x(t)dt + Rl(t)dvl(t)

= C1 (t)z(t)dt + R1 (t)dv 1 (t). (5.75)

Let " 2  d 1 _1/2

A(t) = [Ql(t)A(t)+dTt QI(t)]Q 1 (t). (5.76)

Then player l's problem can be written

dz(t) = (A(t)z(t) +B 1 (t)u1 (t)Idt + G(t)dw(t),

z(t ) = x° (5.77)

dy1 (t) = C1 (t)z(t)dt + R1 (t)dv1 (t)

tf

minf (z'(t)z(t)+uj(t)ul(t))dt
t
0

where we omitted the term u2(t)Rt)u2(t) since the first two of the

assumptions (5.72) guarantee that y2 (t) is independent of ul, (see Lemma 5.2).

(5.77) is a classical stochastic linear regulator problem. Player 1 has to

use E[z(t)y llt] = z(t) and his control law is linear. Player 2 will be

faced with a classical linear quadratic control problem with state

(x(t),z(t)) and he will have to calculate E[x(t) Y2 t] and E[z(t) lY2,t]
112

=Q (t)E[E[x(t)lyl1 t]JY2,t] ; i.e. player 2 will use a two step filtering

procedure. We thus see that conditions (5.72) single out a class of problem

with nonnested y and Y2 which admits a unique solution linear in the

estimates E[x(t)ly 1 , E[x(t)Y 2 ,t], E[E(x(t)iylt]1Y2 t1 and there is no

need for infinite dimensional filtering.
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CHAPTER 6

CONCLUSIEONS

The work presented in this thesis answers certain questions in the

area of Leader-Follower and Nash differential games. The main topics include

existence of closed-loop Nash strategies, necessary conditions for closed-

loop Leader-Follower strategies, sufficient conditions for Leader-Follower and

Nash strategies with memory and stochastic Nash games with state information.

En Chapter 2 we gave conditions which guarantee the existence of linear

closed loop Nash strategies. We also established, in this chapter, the

uniqueness of analytic closed loop Nash strategies for analytic differential

games. In Chapter 3 we gave necessary conditions for closed-loop Leader-

Follower strategies. It was shown that the leader's problem is a singular

control problem, which explains the peculiar behavior of certain previously

studied examples. It was also established that the leader can in general

restrict himself to strategies affine in the state and that there are other

types of strategies to which the leader can restrIct himself without

deteriorating his cost. These different types of strategies although

guaranteeing the same optimal costs and trajectories, might result in different

sensitivity or stability properties. It was also shown in this chapter that

the Principle of Optimality holds for Leader-Follower differential games, if

and only if it is in the players' common interest to consider the leader's

problem as a team problem. In Chapter 4 we dealt with sufficient conditions

for Leader-Follower and Nash differential games where the players have recall

of previous values of the trajectory. In particular for the Leader-Follower

game we considered the case where the Leader's problem is treated as a team



133

problem by both players. The conditions of this chapter were given in the

form of integral equations. In Chapter 5 we considered stochastic Nash

games. Results concerning the uniqueness of linear strategies were derived

for the static case and translated to the dynamic one. For the dynamic case

it was shown that if the control of one player does not affect the information

of the other and if at least one player's cost is not affected by the other

through the penalization of the state, then under invertibility conditions for

certain matrices, the linear solution is the unique one.

There is a plethora of problems to be studied in the area of

differential games with state information, besides those studied in this

thesis. We will single out some of them arising naturally from the study

presented here. Chapter .2 suggests the following areas of research:

1) Uniqueness (or nonuniqueness) of closed loop Nash strategies. 2) Geometric

conditions for solvability of the coupled Riccati equations. 3) Efficient

algorithms for solving the coupled Riccati equations. Chapter 3 suggests the

following areas of research: 1) Generalize the analysis in Chapter 3 to

nonstandard control problems where xt
= {x(e)0<e< t} plays the role of x(t).

2) Generalize the analysis in Chapter 3 to L-F games where the leader uses

u(xt~t). 3) Efficient algorithms for solving the L-F game of Chapter 3.

Chapter 4 suggests the following areas of research: 1) Existence and unique-

ness of the solutions presented in Chapter 4. 2) Single out simple classes of

L-F and Nash games with memory and provide computational procedures. Chapter 5

suggests the following areas of research: 1) In view of the possible nonlinear

solutions to the games of this chapter, provide simple sufficient conditions to

check optimality of nonlinear solutions. 2) Geometric interpretations of the
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matrix-type conditions of this chapter. Of course in all chapters, questions

of sensitivity and stability character of the solutions arise especially when

the solutions of the games are not unique.
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APPENDIX A

PROOF OF PROPOSITION A.1

In [4], Proposition 1 states that given (2.1),(2.2) where

Ril,R 22 > 0, then if KI, K satisfying (2.4) exist and A (as in (2.5)) is

A.S., then the strategies (2.7) satisfy (2.3). This is not true as the
2 2

counterexample x = x + u + v, - = = o (x2 + U  2v2)dt demonstrates.

[This example is used in [9] to show that in the zero sum case the linear

solution for the game over a finite period of time [0,T] does not, as

T -. +ao, tend to the linear solution of the infinite time case.] But if one

makes additional assumptions then the conclusion holds.

The correct form of Proposition 1 in [41 is

Proposition A.l: Given the system (2.1) and the two functionals (2.2) where

Qi' Rij are real symmetric matrices and Ril,R 2 2 > 0, if there exist real

symmetric matrices K1, K2 satisfying (2.4) and (2.5) and either (i) or (ii)

hold:
(i) +K.-IR -i

(i) Q, + K.R. .R .R. .K. > 0, ij 1,2, i j.
J JJ li JJ J

(ii) The two control problems

= (A- B.R)IB'Kj)x + B.u.

+C0

mi Yo (x'[Q+K.R. .R. R. K Ix + u'R u.)dt, i 0 j, i,j 1,2min o (x'[ + -i -i

satisfy the conditions of Theorem 2, p. 167 in [14], then the strategies

(2.7) satisfy (2.3) and Jl J2 are finite.
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APPENDIX B

NONFINITE JS

The case where at least one of Jl, J2 is += could also be

examined. For example, if we are interested in a linear Nash equilibrium

where J -- + and J2 is finite, then this amounts to seeking ui = -L X,

i = 1,2 where (i), (ii), (iii) hold:

(i) The control problem

x = (A- B1LI)x + B2u2

*2 r Ymnjo (x'(Q 2 +LI R9 1 LI)X + u2 R2 2 u2dt

has J2 =  2 finite. (For example assume controllability and

Q2 + LI R2 1 L1 
m 0).

(ii) The problem

x = (A- B2 L2)x + B1uI

+00

J, = Yo(x'(Ql +  
12 L2 )x + uRllul)dt

has J, + o for every u -LL x (which means roughly that some uncontrollable

mode X of the pair (A-B 2L2,BI) which does not lie in the null space of

QI + L2 RI 2 L2 has Re [k] 0).

(iii)

* -1 ,

2 R2 2 B2 K2

* * *, * -i lO(A- B L 2 (Q2+L 'R21L*) K2 B 2R22BK

2 11 A 1 1 2  1 2

Similarly one can form conditions for the cases J1 = 2 += , J1 -o and

J2 finite.



137

APPENDIX C

PROOF OF 2.32

Consider the matrix differential equation

KI = K1A + A'KI + QI -- KS2K2 - K2S2KI + K2SolK2 (C.I)

2 2 K2A + A'K2 - K2S2K2 - K2SK1 - K1S1K2 + K1So2KI C.2)

where K1 , K2 are time varying, t 2 0 and KI(O) = F1 , K2 (O) = F 2 are the

initial conditions. Then it follows that for t 0 sufficiently small it holds
t

Kl(t) = eAteA't + PoeA[Ql-KlSlKl-K I S2 K2 - K2S 2KI+K 2SolK2 ] ' eA da

(and a similar one for K2 (t)). The constant matrices p1 .I T2 solve (2.67),

(2.68) if and only if

eAt eA it  t Aa leA'crda
f e 1 + ro e [Q -rFISl'-rIS 2 F2 -f 2 S2 '"+F 2Sol 2]

(and a similar one for '2 ). Because A is A.S. and 11, r 2 constant, the integral
+W

.oe AC EQ1 - riSlrl -rlS 2 " 2 -r 2 S2Fl+F 2 sol r
2 leA'ldx

exists. Also

f e A eQ 
- I S I F I '

a
I s F 2 " 2 S 2 + r 2 S o l " 2 l e A 'a d =

t

(w=a - t)

e A~w leA' (w+t
= f eA+t)[ rlSlr - S 2 2 "2S 2 1 +F 2 Sol 2 1e )d -

At I A'te le
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and thus
t + At I A't

= 0 It cc

from which we conclude thatI = r A similar result holds for F Intro-

ducing scaling Fi = r 2) c > 0 and setting Ki = i, we have (2.32).

kk.

ducin scalng ~'
2 1. 1
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APPENDIX D

PROOF OF 2.36

It is easy to see that HleFtl j1Tfl '!T-I 1 le tfl. Let t > 0 and

r J1

J 0
A 

2

0*

where J .'s are the Jordan blocks of dimension ml,...,rik (mn1 + + mk  n).

Let

-.-
1 2 t I..t

eJit X ~te =e .=e|

0
*1

Then

eAtjj XXt

Wehae ax fle A ~ j et max 1WA l
i 'l . •• ,ki=l, ... ,k

We have

t ti
- 2

1 2-

+ = I+J

0 0 6O 0

0- 0

i iSo, if x (xl,...,xi) E ?1 , x = (2..x)
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. I ' sup liiXi sup fi!xI! + t li x j

x;,+t I

=l+ t sup !I i+ t sup _il i+

2 2 ~i~l1 **
x.+ .+x2=1

For A. we have

S t 2 t i-2

21 2 3 2 ... (i-1)

t i-3

_ t
3""3... (i-I)

_ 
o =.

t

i.I+00I

2 I + 2

0

0 L

We have again

+

and thus

1+ t(1 +

Continuing similarly 
we end up with
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t t t , t ,

!fiI  i+ t (I+ L(l+ L(...( i-2'l i--1) ,...)

2 + i- -ii

. 2! . " " (i-l)!

Therefore, if m = max(ml .... nk)

lie Ft 1 :5 rITIr' 1 Tle At' < HTIT-i T lrne-t(l+ m-1 m-I tj

.. .. .~iI~ e iT, . . +HHTp e (=', ).
j-O J.

Direct calculation gives (recall % < 0)

Ft 2 -2 i t[ 2 2 +' r-i 2Xt t
o !etdt p2 e e2 (-,')] dt = p e dt

j=0 i'" 0

i p =0 E i ~j ) p T(-i/). (D.1)

j0....

1~= (2
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APPENDIX E

SUFFICIENT CONDITIONS FOR ASSUMTIOF (A)

In this Appendix we give certain conditions under which Assumption

(A) (Section 3.2) holds.

Lemma E.l: Let U be a subset of U (see (3.1)), defined as

U% (uE Ulu(x,t) = C(t)x + D(t), where the m xn matrix C( )

and the mx I vector D(t) are piecewise continuous (E.1)

functions of time over to tf].

Then it holds:

inf J (U,V) z: inf JlI(U,V) ;,- inf J l(U,V) = inf JlI(U,V) (E2

uEU, vETu uEU, '.ETu uE U, vET'u u EU vET'u.

Proof: The inequalities follow from the facts U U, TuCT'u VuEU. The

last equality is obvious in the light of (3.26) and the proof of Theorem 3.2.

An immediate conclusion of Lemma E.1 is that if

inf JI(u,v) inf J (U,V) 
(E.3)

uEU 2 , vETu uEU 2 ,vET'u

holds, then Assumption (A) holds (with UN = U). For (E.3) to hold, it

suffices that the first order necessary conditions for the follower's

problem are also sufficient, for each fixed uE U . More specifically, for
ffixed C(t), D(t) as in defintion (EI) , we consider the problem

ii
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t f

minimize h(x(tf)) + ,! M(x,C(t)x+D(t),v,t)dt
f t

(E .4)

subject to: 
vEV 0

x = f(x,C(t)x+D(t),V,t), x(to ) = ) tE [totf]

and seek conditions under which the first order necessary conditions for an

optimal v for problem (E.4) (see (3.10-2)-(3.10-4)) are also sufficient. Such

conditions can be found in Chapter 5-2 of [39]. We formalize this discussion

in the following Proposition.

Proposition E.I: If for each uE U , the first order necessary conditions

(3.10-2)-(3.10-4) for problem (E.4) are also sufficient, then Assumption (A)

holds.

The discussion in the present Appendix generalizes clearly to the

case where each ui depends on h i(x,t) instead of x and to the case where

different U,'s are considered; see for example Proposition 3.1(ii).

As an example where Proposition E.I can be applied, we consider

the linear quadratic game of Section 3. Then, Theorem 5, p. 341

of [391 in conjunction with Proposition E.1 yield that if Q2 0 0, R2 2 > 0,

R21 0, K2f 0 then Assumption (A) holds.
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APPENDIX F

PROOF OF THEOREM 3.1

Proof of Theorem 3.1: Let g=O w.l.o.g. (see [35]). Consider a function

pEU, cp= (w ,..., m) which has the same continuity and differentiability

properties as u*. Such a cp will be called admissible. Using the known

theorems on the dependence of solutions of differential equations on

parameters, we conclude that for eE R, E sufficiently small, u*+cc gives

rise to a trajectory £(x(et),t)ItEFt otf],, x(O,t) = x*(t), and that

x(c,t) is in C w.r. to a. Direct calculation yields

(f +€ )U + ECfx+u E (uI +ecp )f.
T ex x x i--i xx xx c

d ax~e tt)

+f m. ~ ' i i x(et) I = O. (F.I)+ fu', +i fi xV h (Pyi 0.e ~ t

We set

z~t) x~et)I(F.2)
=~t a I c=0

m ii i
A(t) f +u f + Z E[ h u . 7lh + Z u.7 h.fi p (F.3)

x x u i=l x Yl J= JI

Bl(t )  =f'u (F.4)

1 i

B(t) = f 'hi, i1 , . ,m (F.5)2 x

i
where A, BI, B2 are evaluated at t, x*, u*, ux and, thus, for c 0, (F.1) can

be written as
m i i

Ai, z (t =0. (F.6)

For fixed z we consider

-- ~ s )
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Since J~)is in C w.r. to e and u' is a local optimum, it must hold

dJ(e)I _ 0.

Direct calculation yields

t

de ([L: +(u +GCP )Lu + Z (u +G )L.]J
de to X X X i=l xx xx 6e

U i=li i y

Setting q.

r(t) L +u L +Z[17h'u. .Vh +.I:u3-7 h11L (.8
x x u i1 x i ix =jjxx 3 i F8

A (t) LI (F.9)

A~t) L.V i, 1,..,m.(F. 10)
2i x

with 7, Al A 2evaluated at x, u, ux ,we conclude from (F.7)-(F.l0) that

1' 2~ x

t~ 0.y

Therefore (F.U) must hold for every admissible (p. Let I(t,T) be the transition

matrix of A(t). Let also i (t) denote the vector (cp 1(h 1(x*(t),t),t),...,

mm, -i 69 (i(*() )tcP (hm(x*(t),t),t))' and Cp (t) the vector (h x(~)t Then from

(F.6) we obtain ~

z(t) (tj)B (T)CP(T) + J1B2 (T) CP (T)]dT (F.12)

t 'E [ t , tI

and substituting in (F.U1) we obtain
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tf t M

( (t)f §(t,r)[Bl() 7(r) + i B2 ()p ()]dr + A(t)(t)
t t 2

0 0 mi

+ i6'(t) i (t) } dt = 0. (F.13)
jj2

Let X[a,b] denote the indicator function of [a,b] [to,tf]. We can inter-

change the order of integration in(F.13) since the integrated quantities are

bounded on [to,t] x [to tf] (Fubini's Theorem). Using the fact X(c)oto,b]

X(b) we have successively
[ctfI

tf tf ffmi

[F j' [t(t, T)B (T) Qr) +I'(t) (tj,)B ()(-P-I()] .
t t

o o

X(t) drdt F [J (t)§(tT)dt]Bl( )W(T) dr +

LtI t

m f f
+ Q [f f(t) (t,)dt]B (T)q(T)dT. (F.14)

i=l t T

By introducing

tf

p'(T)= ' (t)§(t,r)dT (F.15)
T

(F.13) can be written as

tf m f

t t
o 0SI() dr = 0. (F.16)

Applying Lemma 3.1 to (r.16), we obtain

p'(T)B1 (T) +A 1(T) 0 0, on [to~tf] (F.17)
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p (T) B'(T) + A(T) 0 on [to)fL (F. 18)

Using (F.4), (F.5) and (F.9), (F.10) in (F.17), (F.18) we have equivalently

(3.20) and (3.21). Differentiation of (F.15) and use of (F.3) and (F.8) give

the equivalent to (F.15)

-P L +f p + m q. ' h(L.+f.p)

p (tf 0.

The assumption g E0, is removed in the known wav, resulting in (3.22).
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APPENDIX G

PROOF OF THEOREM 4.1

Proof of Theorem 4.1: Consider the functions

H :Rn X C XLc -C

1n ',M n4

H2 :Rn X C nX L' -L k

H3 R n X C nX L co R n

J:R nX C X LC' R

defined for (' ,x,u) E Rn X C~ X L by

t t
H 1 ( ,X'U)(t) =x(t) - A(Tr)x('t)dlr - .fB( )u(1r)dr-x0

to to
t f t

H 2 ( ,X'U)(t) (d S' d(t,s)1x(s) + I' [d s (t's)Iu(s) -q(t)

t t
0 t0 t(G.2)

tf t

J(P.,x,u) =2~ + tf (x I (t)Q (t) x(t) + u' (t)R(t)u(t))dt)

to

Clearly, Hl, H 3, and J are well defined. To show that H 2 is well defined

t f

it suffices to show that if u EL =' then I[d s1 (t,s))u(s) EL lk.
to

L et u E L m ~4 -M. Then there exists a

sequence (u i of continuous functions u :[(to Stf RmD u (t) - u (t)
a' n1ln

a.e. and Iu n(t)i S M + 1 V t E[tt fJ],Yn,(see Theorem 3, page 106 in
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[49]. y n(t) tf [dsIl(ts)Un (s) is measurable, Iyn(t)I - (M+l)ml(t)

to

and thus y EL . Since u - u a.e., by Egoroff's Theorem we have thatIn l'm* n
V e> 0 ~4 (Ac) -0 as n + where AC=[s :sE[t ,tf (S)-U(s)I >e]

n n of n

It holds
tf t

1n(0)-1 [ds~l(t,s)]u(s)l 1 [ds~l(t,s)](US-U)) -! + 1c
t0t 0An An

C_.-'l(t) + (2M+l)cl(t)p,(A).

tf

t
0

_e'Cl(t), a.e. in t E[to,tf] where lir Yn(t) stands for either limsup or

liminf. Since this inequality holds V > 0 we conclude that

tf

ff

[dsl1(ts)]u(s) = lir yn(t) a.e. in [toitf (G.3)

t

0f

Since lYt(t) i < s (M+l) l(t) and (A 3)holds, we conclude by Lebesgus theorem

that t f
It [dsl(t's)]u(s) E nl, k .
to

Problem (P) can be written equivalently

minimize J(g,x,u)
(G.4)

subject to Hi( ,x,u) =0, i=1,2,3

(9,x,u) ER nX Cnx LC m m

By Theorem 1, page 220 in [50] we conclude that a sufficient condition for

(9*,x*,u*) to solve (G.4) is the existence of a (P,X,k) E (CLlk,R )*such that

1t denotes Lebesgue measure on [t0,t

;
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J g*, x*, u*) + < 1 (* ,u), + (H2 (g*,x*, u*) , + (H 3 (9*,x*, u*), k)

<J(W) + HI(u),p) +(H2(w),X) +(H3(w),k) Vw E0. (G. 5)

Since the function j(W) =J(w) +HI(w),1 +(H2(w),X) +(H 3 (w),k) is convex

and Frechet differentiable a necessary and sufficient condition for (G.5) to

hold is that

dj( *,x*,u*;C,h,v) = 0

(G.6)
V(C,h,v) ERn XCn L.,

where da denotes the Frechet differential. Straightforward calculations result

in the following explicit form for (G.6).

('F +I') C-- 0 V ER (G.7)
tf tf tf tf

t t t t
o 00 0t t

+1f ' it)A(t)h (t)dt -kF :fA (t)h (t)dt =0 Vh E C (G.8)
t tn

to

tf tf tf tf
Iu' (t)R(tlv(t)dt + '(t)B(t)v(t)dt+j %'(t) ( [d s11(t,s)v(s))dt

t t t tO 0 0 0
t-kfB (t)v (t )dt = 0, vvEL . (G.9)
t '%

0

Use of the unsymmetric Fubivi theorem in [47] yields

t f t f t f t f(t ( [ds 7 t,s~h(s))dt- [ds, "~ )itsd)1~)(.0
t t t t

0 0 0 0

tf tf tf tf

r \'(t) [ds 1(t,s)Iv(s))dt f [dsf Qr'(t),I(ts)dt)lv(s) .  (G.11)

Using (G.10),(G.1I) in (G.8),(G.9) we obtain the sufficiency conditions (4.41),

(4.42) wherein we substituted . by 6-k, and k by -F * = -Fx(tf).
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